The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
At present, the structure of power systems is greatly changing due to the penetration of decentralized generations. Although they encompass a high flexibility potential, their large-scale penetration interferes with t...At present, the structure of power systems is greatly changing due to the penetration of decentralized generations. Although they encompass a high flexibility potential, their large-scale penetration interferes with the power system operation at all voltage levels. To get rid of this flaw and exploit their flexibility, different concepts like Virtual Power Plants, Microgrids and Cellular Approach have been introduced but still no solution is in sight. Under these conditions, it seems quite intriguing to find out whether these concepts are likely to offer a complete solution or not. This paper presents ten criteria to assess the complete Smart Grid solution and introduces a comprehensive evaluation system based on cloud-charts. The paper looks into the already existing solutions, which are respectively based on Virtual Power Plants, Microgrids and Cellular Approach concepts. The investigations have shown that none of these solutions meets all criteria necessary for a complete Smart Grid solution. Even a combination of different criteria fails to yield the desired results.展开更多
In the last decade, increasing applications of information technology (IT) within power industry has become a significant reality. As distributed power networks are gaining importance and renewables are getting a bigg...In the last decade, increasing applications of information technology (IT) within power industry has become a significant reality. As distributed power networks are gaining importance and renewables are getting a bigger ratio within energy production, Smart Grid applications have become essential, especially due to the intermittent nature of renewable energy resources. Smart Grid is a sustainable energy system that measures, checks, and controls the generation, transmission, and consumption of electrical energy in grids on all voltage levels. Smart Grid experts are driving forward the development of effective communication and information technologies for the build-up of intelligent power supply networks. Examples of these are control systems for the realization of virtual power plants, intelligent consumer data acquisition systems, and smart distribution management systems. Fuel cell-based hydrogen electricity, in comparison to other renewable energy sources, is more stable and predictable. Yet hydrogen power and smart-grids have many application points, mainly as means of energy storage. This study claims that hydrogen energy and smart-grids could also engage through an appliance of IT managed metering of hydrogen power production. Smart metering and management of hydrogen fuel cells would enable advanced planning of short-to-mid-term power productions and thus foster use of hydrogen power within distributed networks, as local community or industrial applications.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
文摘At present, the structure of power systems is greatly changing due to the penetration of decentralized generations. Although they encompass a high flexibility potential, their large-scale penetration interferes with the power system operation at all voltage levels. To get rid of this flaw and exploit their flexibility, different concepts like Virtual Power Plants, Microgrids and Cellular Approach have been introduced but still no solution is in sight. Under these conditions, it seems quite intriguing to find out whether these concepts are likely to offer a complete solution or not. This paper presents ten criteria to assess the complete Smart Grid solution and introduces a comprehensive evaluation system based on cloud-charts. The paper looks into the already existing solutions, which are respectively based on Virtual Power Plants, Microgrids and Cellular Approach concepts. The investigations have shown that none of these solutions meets all criteria necessary for a complete Smart Grid solution. Even a combination of different criteria fails to yield the desired results.
文摘In the last decade, increasing applications of information technology (IT) within power industry has become a significant reality. As distributed power networks are gaining importance and renewables are getting a bigger ratio within energy production, Smart Grid applications have become essential, especially due to the intermittent nature of renewable energy resources. Smart Grid is a sustainable energy system that measures, checks, and controls the generation, transmission, and consumption of electrical energy in grids on all voltage levels. Smart Grid experts are driving forward the development of effective communication and information technologies for the build-up of intelligent power supply networks. Examples of these are control systems for the realization of virtual power plants, intelligent consumer data acquisition systems, and smart distribution management systems. Fuel cell-based hydrogen electricity, in comparison to other renewable energy sources, is more stable and predictable. Yet hydrogen power and smart-grids have many application points, mainly as means of energy storage. This study claims that hydrogen energy and smart-grids could also engage through an appliance of IT managed metering of hydrogen power production. Smart metering and management of hydrogen fuel cells would enable advanced planning of short-to-mid-term power productions and thus foster use of hydrogen power within distributed networks, as local community or industrial applications.