Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large...Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.展开更多
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi...Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.展开更多
As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique...As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.展开更多
The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the gr...The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the growth of Na dendrites and side reactions. Carbon materials are regarded as ideal modify layers on Na metal anode to regulate the Na+ plating/stripping behavior and inhibit the Na dendrites and side reactions due to their light weight, high stability and structural adjustability. However, commonly used carbon nanotubes and carbon nanofibers cannot enable these modified Na metal anodes to operate stably in full batteries with a high-load cathode (】15 mg·cm^(−2)). The most fundamental reason is that abundant polar functional groups on the surface bring serious side reactions and agglomerations lead to uneven Na+ flow. Here, a proof-of-concept study lies on fabrications of carbon nanospheres with small amount of polar functional groups and sodiophobic components on the surface of Na metal anode, which significantly enhances the uniformity of the Na+ plating/stripping. The assembled symmetric battery can cycle stability for 1300 h at 3 mA·cm^(−2)/3 mAh·cm^(−2). The full battery with high-load Na3V2(PO4)3 (30 mg·cm^(−2)) maintains a Coulombic efficiency of 99.7% after 100 cycles.展开更多
Ether-based electrolytes with excellent reductive stability are compatible with sodium(Na)metal an-odes,which enables stable cycling for Na metal batteries even in an anode-free configuration.However,the practical app...Ether-based electrolytes with excellent reductive stability are compatible with sodium(Na)metal an-odes,which enables stable cycling for Na metal batteries even in an anode-free configuration.However,the practical applications of anode-free sodium batteries(AFSBs)with a high theoretical energy density are restricted by the low-rate capability and limited cycle life.Here we demonstrate that the mechanical properties of the separators,which have been overlooked in previous studies,can significantly affect the cycling stability of AFSBs due to the intrinsic softness of Na and the large volume variation of AFSBs during Na plating/stripping.By using various separators including polypropylene(PP),polyethylene(PE),PP/PE/PP tri-layer,and aluminum oxide-coated separators,we find that the balanced elastic moduli of the separator along the machine direction and transverse direction are crucial for enabling highly effi-cient Na plating and unlocking the 4 C fast-charging capability of the AFSBs at practical conditions including a high cathode active mass loading(13.5 mg/cm^(2)),lean electrolyte addition(8.8 mL/cm^(2)),and no pre-sodiation process.This study provides an important separator design principle for the develop-ment of high-rate and long-cycle-life AFSBs.展开更多
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to...Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.展开更多
Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alte...Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.展开更多
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ...The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.展开更多
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signali...Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signaling molecule in the bloodstream.The purpose of this study was to investigate the effect of nitric oxide on the microrheological properties of red blood cells(RBCs)in RBC samples of various media after the addition of nitric oxide donor sodium nitroprusside in vitro.Microrheological properties were measured using laser aggregometer and ektacytometer based on diffuse light scattering and diffraction of laser light on a suspension of RBCs,respectively.The study found that heparin-stabilized blood showed increased RBC aggregation and deformation with sodium nitroprusside concentrations of 100,and 200M,while EDTA-stabilized blood showed slightly decreased aggregation and unchanged deformation.With washed RBCs in dextran solution,the addition of sodium nitroprusside(in the concentrations of 100,and 200M)resulted in decreased aggregation and increased deformation.These-ndings aid in our understanding of nitric oxide's effect on RBC microrheological properties.展开更多
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCT...BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making.展开更多
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances t...This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.展开更多
Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ...Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.展开更多
Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in...Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.展开更多
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar...Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.展开更多
We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by m...We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by mixing probiotics with sodium alginate-chitosan sol.The preparation contained complex calcium ions,which were released in the acidic environment of gastric juice,thus crosslinking to form in-situ gel.Different proportions of sodium alginate-chitosan were prepared to add to simulate gastrointestinal fluid to get the best ratio.The optimal ratio of LSC preparation was compared with traditional gel microspheres to observe the survival effect of probiotics in gastrointestinal fluid environment.Compared with sodium alginate sol,the porosity of sodium alginate-chitosan sol is lower,which is beneficial to the protection of probiotics.When the ratio of chitosan to sodium alginate is 1.5:1.5 (w/v),the protective effect is the best.The protective ability of LSC is 64 times that of traditional microspheres,and it has the potential of synergistic anti-tumor.A probiotic preparation with simple preparation process and better protection effect compared with traditional microspheres was prepared,which has joint anti-tumor potential.展开更多
As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibitio...As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves.展开更多
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of...Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.展开更多
基金supported by the Double Support Project (035–2221993229)。
文摘Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
基金The authors are grateful for the grants provided by the National Natural Science Foundation of China(Grant no.52274309)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant no.CX20220183)Simin Li thanks the National Natural Science Foundation of China(Grant no.52204327).
文摘Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.
基金supported by the National Natural Science Foundation of China(Nos.52004335 and 52204298)the National Natural Science Foundation of Hunan Province,China(No.2023JJ20071)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3067).
文摘As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.
基金supported by the National Natural Science Foundation of China(Nos.52222213 and U23A20572)the Fundamental Research Funds for the Central Universities of China(No.22lgqb01).
文摘The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the growth of Na dendrites and side reactions. Carbon materials are regarded as ideal modify layers on Na metal anode to regulate the Na+ plating/stripping behavior and inhibit the Na dendrites and side reactions due to their light weight, high stability and structural adjustability. However, commonly used carbon nanotubes and carbon nanofibers cannot enable these modified Na metal anodes to operate stably in full batteries with a high-load cathode (】15 mg·cm^(−2)). The most fundamental reason is that abundant polar functional groups on the surface bring serious side reactions and agglomerations lead to uneven Na+ flow. Here, a proof-of-concept study lies on fabrications of carbon nanospheres with small amount of polar functional groups and sodiophobic components on the surface of Na metal anode, which significantly enhances the uniformity of the Na+ plating/stripping. The assembled symmetric battery can cycle stability for 1300 h at 3 mA·cm^(−2)/3 mAh·cm^(−2). The full battery with high-load Na3V2(PO4)3 (30 mg·cm^(−2)) maintains a Coulombic efficiency of 99.7% after 100 cycles.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China(No.52388201)National Natural Science Foundation of China(Nos.U21A2080 and 92263206)+2 种基金National Key Research and Development Program of China(No.2022YFB2404403)Beijing Natural Science Foundation(No.L223008)Jiangyin-Tsinghua Innovation Lead Action Special Project(No.2022JYTH0108),and TsinghuaToyota Joint Research Fund.
文摘Ether-based electrolytes with excellent reductive stability are compatible with sodium(Na)metal an-odes,which enables stable cycling for Na metal batteries even in an anode-free configuration.However,the practical applications of anode-free sodium batteries(AFSBs)with a high theoretical energy density are restricted by the low-rate capability and limited cycle life.Here we demonstrate that the mechanical properties of the separators,which have been overlooked in previous studies,can significantly affect the cycling stability of AFSBs due to the intrinsic softness of Na and the large volume variation of AFSBs during Na plating/stripping.By using various separators including polypropylene(PP),polyethylene(PE),PP/PE/PP tri-layer,and aluminum oxide-coated separators,we find that the balanced elastic moduli of the separator along the machine direction and transverse direction are crucial for enabling highly effi-cient Na plating and unlocking the 4 C fast-charging capability of the AFSBs at practical conditions including a high cathode active mass loading(13.5 mg/cm^(2)),lean electrolyte addition(8.8 mL/cm^(2)),and no pre-sodiation process.This study provides an important separator design principle for the develop-ment of high-rate and long-cycle-life AFSBs.
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
基金supported by the National Natural Science Foundation of China (22278231,22005165 and 22376110)the Natural Science Foundation Project of Shandong Province (ZR2022MB092 and ZR2023ME098)the Taishan Scholar Program (ts201712030)。
文摘Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.
基金supported by projects from the National Natural Science Foundation of China(U20A20145)the Open Project of State Key Laboratory of Environment-friendly Energy Materials(20kfhg07)+6 种基金Distinguished Young Foundation of Sichuan Province(2020JDJQ0027)2020 Strategic Cooperation Project between Sichuan University and the Zigong Municipal People's Government(2020CDZG-09)State Key Laboratory of Polymer Materials Engineering(sklpme2020-3-02)Sichuan Provincial Department of Science and Technology(2020YFG0471,2020YFG0022,2022YFG0124)Sichuan Province Science and Technology Achievement Transfer and Transformation Project(21ZHSF0111)Sichuan University Postdoctoral Interdisciplinary Innovation Fund(2021SCU12084)Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory(2122010)。
文摘Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.
基金supported by the National Natural Science Foundation of China (52173273)Fundamental Research Funds for the Central Universities (2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths (No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute (No.2023SJ02)。
文摘The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
基金supported by the Russian Science Foundation grant(No.22-15-00120)supported by the grant(No.21-2-10-59-1)from the Foundation for the Development of Theoretical Physics and Mathematics BASIS.
文摘Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signaling molecule in the bloodstream.The purpose of this study was to investigate the effect of nitric oxide on the microrheological properties of red blood cells(RBCs)in RBC samples of various media after the addition of nitric oxide donor sodium nitroprusside in vitro.Microrheological properties were measured using laser aggregometer and ektacytometer based on diffuse light scattering and diffraction of laser light on a suspension of RBCs,respectively.The study found that heparin-stabilized blood showed increased RBC aggregation and deformation with sodium nitroprusside concentrations of 100,and 200M,while EDTA-stabilized blood showed slightly decreased aggregation and unchanged deformation.With washed RBCs in dextran solution,the addition of sodium nitroprusside(in the concentrations of 100,and 200M)resulted in decreased aggregation and increased deformation.These-ndings aid in our understanding of nitric oxide's effect on RBC microrheological properties.
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
文摘BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(NRF-2020R1A6A1A03043435,NRF-2023R1A2C2003210,and NRF-2022M3H4A1A04096478)by Technology Innovation Program(Alchemist Project,20012196,Al based supercritical materials discovery)funded by the Ministry of Trade,Industry&Energy,Korea.support from the“Bundesministerium fur Bildung und Forschung”(BMBF)and the computing time granted through JARA-HPC on the supercomputer JURECA at Forschungszentrum Julich.
文摘This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.
基金funding support from the National Natural Science Foundation of China (22125902, 22109150, 22279126, U2032202, and 21975243)the DNL cooperation Fund, CAS (DNL202020)+1 种基金the National Key R&D Program of China (no. 2022YFA1504101)the Anhui Provincial Natural Science Foundation (2108085QB65)
文摘Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.
基金This research was supported by the Twinning service plan of the Zhejiang Provincial Team Science and the Science and Technology Develpoment project of Hangzhou(202003A02).
文摘Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.
文摘Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.
基金Funded by the National Natural Science Foundation of China(No.52003211)。
文摘We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by mixing probiotics with sodium alginate-chitosan sol.The preparation contained complex calcium ions,which were released in the acidic environment of gastric juice,thus crosslinking to form in-situ gel.Different proportions of sodium alginate-chitosan were prepared to add to simulate gastrointestinal fluid to get the best ratio.The optimal ratio of LSC preparation was compared with traditional gel microspheres to observe the survival effect of probiotics in gastrointestinal fluid environment.Compared with sodium alginate sol,the porosity of sodium alginate-chitosan sol is lower,which is beneficial to the protection of probiotics.When the ratio of chitosan to sodium alginate is 1.5:1.5 (w/v),the protective effect is the best.The protective ability of LSC is 64 times that of traditional microspheres,and it has the potential of synergistic anti-tumor.A probiotic preparation with simple preparation process and better protection effect compared with traditional microspheres was prepared,which has joint anti-tumor potential.
基金supported by the Air Force Characteristic Medical Center Youth Talent Program 22YXQN020。
文摘As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves.
基金The authors are thankful to Ministry of Human Resource Development(presently Ministry of Education),Government of India,New Delhi,for providing research facility by sanctioning Center of Excellence(F.No.5-6/2013-TS VII)in Tissue Engineering and Center of Excellence in Orthopedic Tissue Engineering and Rehabilitation funded by World Bank under TEQIP-II.
文摘Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.