During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground sam...During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground samples and the information is subjective,heterogeneous,and imbalanced due to mixed ground conditions.In this study,an unsupervised(K-means)and synthetic minority oversampling technique(SMOTE)-guided light-gradient boosting machine(LightGBM)classifier is proposed to identify the soft ground tunnel classification and determine the imbalanced issue of tunnelling data.During the tunnel excavation,an earth pressure balance(EPB)TBM recorded 18 different operational parameters along with the three main tunnel lithologies.The proposed model is applied using Python low-code PyCaret library.Next,four decision tree-based classifiers were obtained in a short time period with automatic hyperparameter tuning to determine the best model for clustering-guided SMOTE application.In addition,the Shapley additive explanation(SHAP)was implemented to avoid the model black box problem.The proposed model was evaluated using different metrics such as accuracy,F1 score,precision,recall,and receiver operating characteristics(ROC)curve to obtain a reasonable outcome for the minority class.It shows that the proposed model can provide significant tunnel lithology identification based on the operational parameters of EPB-TBM.The proposed method can be applied to heterogeneous tunnel formations with several TBM operational parameters to describe the tunnel lithologies for efficient tunnelling.展开更多
Presented in this paper is a three-dimensional plastic limit analysis method of bearing capacity of the deeply-embedded large-diameter cylindrical structure in the cross-anisotmpic soft ground. The most likely failure...Presented in this paper is a three-dimensional plastic limit analysis method of bearing capacity of the deeply-embedded large-diameter cylindrical structure in the cross-anisotmpic soft ground. The most likely failure mechanism is assumed to be of a composite rupture surface which is composed of an individual wedge in the passive zone or two wedges in both active and passive zones near the mudline, depending on the separation or bonding state at the interface between the cylindrical structure and neighboring soils in the active wedge, and a truncated spherical slip surface at the base of the cylinder when the structure tends to overturn around a point located on the symmetry axis of the structure. The cylindrical structure and soil interaction system under consideration is also numerically analyzed by the finite element method by virtue of the general-purpose FEM software ABAQUS, in which the soil is assumed to obey tie Hill's criterion of yield. Both the failure mechanism assumed and the plastic limit analysis predictions are validated by numerical computations based on FEM. For the K0-consolidated ground of clays typically with anisotropic undrained strength property, it is indicated through a parametric study that limit analysis without consideration of anisotropy of soil overestimates the lateral ultimate bearing capacity of a deeply-embedded cylindrical structure in soft ground in a certain condition.展开更多
Prefabricated vertical drains(PVDs)are commonly used to shorten the drainage path for consolidation as part of the improvement of marine soft ground.Many studies that focus on the primary consolidation settlement of P...Prefabricated vertical drains(PVDs)are commonly used to shorten the drainage path for consolidation as part of the improvement of marine soft ground.Many studies that focus on the primary consolidation settlement of PVD-improved soft ground have been conducted;however,residual settlement has been scarcely investigated.Residual settlement is the net effect of secondary compression and the remaining primary consolidation and generally occurs while the facilities are operating.In this study,residual settlement was investigated using the measured field settlement data obtained from the surface settlement plate and multilayer settlement gauges.This study determined that PVD still has some effect on residual settlement and can reduce the settlement times.Residual settlement is only related to the PVD-improved soil layer and only occurs significantly in the middle zone of that layer over a few months.The middle zone may be related to the time delay of excess pore water pressure dissipation.This study concluded that the remaining primary consolidation in the PVD-improved soil layer is the primary cause of residual settlement,whereas secondary compression in the PVD-improved soil layer is only a minor cause.展开更多
As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and sur...As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and surcharge preloading. A new type of electrical prefabricated vertical drain (ePVD) and a new electroosmotic drainage system are suggested to allow the application of the new method. This combined method is then field-tested and compared with the conventional vacuum combined with surcharge preloading method. The monitoring and foundation test results show that the new method induces a settlement 20% larger than that of the conventional vacuum combined with surcharge preloading method in the same treatment period, and saves approximately half of the treatment time compared with the vacuum combined with surcharge preloading method according to the finite element prediction of the settlement. The proposed method also increases the vane shear strength of the soil significantly. The bearing capacity of the ground improved by use of the new proposed method raises 118%. In comparison, there is only a 75% rise when using the vacuum combined with surcharge preloading method during the same reinforcement period. All results indicate that the proposed combined method is effective and suitable for reinforcing the soft clay ground. Besides, the voltage applied between the anode and cathode increases exponentially versus treatment time when the output current of power supplies is kept constant. Most of the voltage potential in electroosmosis is lost at electrodes, leaving smaller than 50% of the voltage to be effectively transmitted into the soil.展开更多
Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embank...Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.展开更多
The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel,especially under good ground conditions.However,the pipe roofing met...The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel,especially under good ground conditions.However,the pipe roofing method has rarely been applied in soft ground,where the prediction and control of the ground settlement play important roles.This study proposes a sliced-soil-beam(SSB)model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground.The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics.As part of this work,the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground.The pipe roofing system was simplified to a threedimensional Winkler beam to consider the interaction between the soil and pipe roofing.The model was verified in a case study conducted in Shanghai,China,in which it provided the efficient and accurate prediction of settlement.Finally,the parameters affecting the ground settlement were analyzed.It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.展开更多
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist...Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.展开更多
采用土-结相互作用分区分析方法(partitioned analysis of soil-structure interaction,PASSI),对软土地基核岛厂房振动台试验中的筏基-混凝土框架模型以及桩基-混凝土框架模型进行了数值模拟,对比分析了振动台试验结果与数值模拟结果,...采用土-结相互作用分区分析方法(partitioned analysis of soil-structure interaction,PASSI),对软土地基核岛厂房振动台试验中的筏基-混凝土框架模型以及桩基-混凝土框架模型进行了数值模拟,对比分析了振动台试验结果与数值模拟结果,并对软土地基下核岛厂房土-基础-结构的地震响应特征进行了分析。对2种模型输入调幅为0.05、0.10、0.20 g的RG160、Chi-Chi与Landers地震波,对比分析了各工况下振动台试验与数值模拟的土体与结构加速度放大系数、楼层反应谱、筏基底部土压力时程、桩身应变以及桩身弯矩。结果表明:数值模拟结果能较好地反映振动台试验结果;经过土层放大作用,随着楼层的增高,振动台试验和数值模拟中的加速度放大系数随之增大,反映了同样的规律;振动台试验与数值模拟所得的土-结体系的反应谱均与输入地震动频谱特征及体系的振动特性相关;振动台试验中,筏板基础会出现倾覆现象,筏基底部土压力时程表现出“东高西低”的现象,但数值模拟中筏基底部的土压力时程未出现此种现象,其原因是数值模拟中未考虑土体与基础的接触非线性;数值模拟中群桩的地震响应与试验的宏观现象基本吻合,定量上有差异,是数值模拟中未考虑桩的非线性所致。展开更多
基金supported by Japan Society for the Promotion of Science KAKENHI(Grant No.JP22H01580).
文摘During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground samples and the information is subjective,heterogeneous,and imbalanced due to mixed ground conditions.In this study,an unsupervised(K-means)and synthetic minority oversampling technique(SMOTE)-guided light-gradient boosting machine(LightGBM)classifier is proposed to identify the soft ground tunnel classification and determine the imbalanced issue of tunnelling data.During the tunnel excavation,an earth pressure balance(EPB)TBM recorded 18 different operational parameters along with the three main tunnel lithologies.The proposed model is applied using Python low-code PyCaret library.Next,four decision tree-based classifiers were obtained in a short time period with automatic hyperparameter tuning to determine the best model for clustering-guided SMOTE application.In addition,the Shapley additive explanation(SHAP)was implemented to avoid the model black box problem.The proposed model was evaluated using different metrics such as accuracy,F1 score,precision,recall,and receiver operating characteristics(ROC)curve to obtain a reasonable outcome for the minority class.It shows that the proposed model can provide significant tunnel lithology identification based on the operational parameters of EPB-TBM.The proposed method can be applied to heterogeneous tunnel formations with several TBM operational parameters to describe the tunnel lithologies for efficient tunnelling.
基金This project is supported bythe National Natural Science Foundation of China (Grant Nos .50579006 ,50639010 and50179006)
文摘Presented in this paper is a three-dimensional plastic limit analysis method of bearing capacity of the deeply-embedded large-diameter cylindrical structure in the cross-anisotmpic soft ground. The most likely failure mechanism is assumed to be of a composite rupture surface which is composed of an individual wedge in the passive zone or two wedges in both active and passive zones near the mudline, depending on the separation or bonding state at the interface between the cylindrical structure and neighboring soils in the active wedge, and a truncated spherical slip surface at the base of the cylinder when the structure tends to overturn around a point located on the symmetry axis of the structure. The cylindrical structure and soil interaction system under consideration is also numerically analyzed by the finite element method by virtue of the general-purpose FEM software ABAQUS, in which the soil is assumed to obey tie Hill's criterion of yield. Both the failure mechanism assumed and the plastic limit analysis predictions are validated by numerical computations based on FEM. For the K0-consolidated ground of clays typically with anisotropic undrained strength property, it is indicated through a parametric study that limit analysis without consideration of anisotropy of soil overestimates the lateral ultimate bearing capacity of a deeply-embedded cylindrical structure in soft ground in a certain condition.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A3067248).
文摘Prefabricated vertical drains(PVDs)are commonly used to shorten the drainage path for consolidation as part of the improvement of marine soft ground.Many studies that focus on the primary consolidation settlement of PVD-improved soft ground have been conducted;however,residual settlement has been scarcely investigated.Residual settlement is the net effect of secondary compression and the remaining primary consolidation and generally occurs while the facilities are operating.In this study,residual settlement was investigated using the measured field settlement data obtained from the surface settlement plate and multilayer settlement gauges.This study determined that PVD still has some effect on residual settlement and can reduce the settlement times.Residual settlement is only related to the PVD-improved soil layer and only occurs significantly in the middle zone of that layer over a few months.The middle zone may be related to the time delay of excess pore water pressure dissipation.This study concluded that the remaining primary consolidation in the PVD-improved soil layer is the primary cause of residual settlement,whereas secondary compression in the PVD-improved soil layer is only a minor cause.
基金financially supported by the National Natural Science Joint High Speed Railway Key Program Foundation of China(Grant No.U1134207)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1125)the Key Science and Technology Program of the Science and Technology Department of Zhejiang Province(Grant No.2009C03001)
文摘As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and surcharge preloading. A new type of electrical prefabricated vertical drain (ePVD) and a new electroosmotic drainage system are suggested to allow the application of the new method. This combined method is then field-tested and compared with the conventional vacuum combined with surcharge preloading method. The monitoring and foundation test results show that the new method induces a settlement 20% larger than that of the conventional vacuum combined with surcharge preloading method in the same treatment period, and saves approximately half of the treatment time compared with the vacuum combined with surcharge preloading method according to the finite element prediction of the settlement. The proposed method also increases the vane shear strength of the soil significantly. The bearing capacity of the ground improved by use of the new proposed method raises 118%. In comparison, there is only a 75% rise when using the vacuum combined with surcharge preloading method during the same reinforcement period. All results indicate that the proposed combined method is effective and suitable for reinforcing the soft clay ground. Besides, the voltage applied between the anode and cathode increases exponentially versus treatment time when the output current of power supplies is kept constant. Most of the voltage potential in electroosmosis is lost at electrodes, leaving smaller than 50% of the voltage to be effectively transmitted into the soil.
基金funded by the Science and Technology Department of Railway Ministry (Grant No. Z2012061)
文摘Abutment piles in soft ground may be subjected to both vertical and horizontal soil movements resulting from approach embankment loads. To constrain the soil movements, the soft soil ground beneath the approach embankment is often improved using composite pile foundations, which aim at mitigating the bump induced by high-speed trains passing through the bridge. So far, there is limited literature on exploring the influence of the degree of ground improvement on abutment piles installed in soft soil grounds. In this paper, a series of three-dimensional (3D) centrifuge model tests was performed on an approach embankment over a silty clay deposit improved by cement-fly ash-gravel (CFG) piles combined with geogrid. Emphasis is placed on the effects of ground replacement ratio (m) on the responses of the abutment piles induced by embankment loads. Meanwhile, a numerical study was conducted with varying ground replacement ratio of the pile-reinforced grounds. Results show that the performance of the abutment piles is significantly improved when reinforcing the ground with CFG piles beneath the approach embankment. Interestingly, there is a threshold value of the replacement ratio of around 4.9% above which the effect of CFG pile foundations is limited. This implies that it is essential to optimize the ground improvement for having a cost-effective design while minimizing the risk of the bump at the end of bridge.
基金supported by the National Natural Science Foundation of China(Grant No.52178342)the Tianjin Natural Science Foundation(No.21JCZDJC00590)the Shanghai Excellent Academic/Technical Leader Program(No.20XD1432500).
文摘The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel,especially under good ground conditions.However,the pipe roofing method has rarely been applied in soft ground,where the prediction and control of the ground settlement play important roles.This study proposes a sliced-soil-beam(SSB)model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground.The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics.As part of this work,the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground.The pipe roofing system was simplified to a threedimensional Winkler beam to consider the interaction between the soil and pipe roofing.The model was verified in a case study conducted in Shanghai,China,in which it provided the efficient and accurate prediction of settlement.Finally,the parameters affecting the ground settlement were analyzed.It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. 51322401, 51404262, 51579239, 51574223)Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology) of China (No. CDPM2014KF03)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580493, 2014M551700, 2013M531424)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)
文摘Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.