With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall...With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.展开更多
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin...Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.展开更多
In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a u...In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation.展开更多
Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mo...Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data.展开更多
Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes...Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single process...An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.展开更多
A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cuttin...A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.展开更多
Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine lea...Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.展开更多
Purpose-Recently,the convolutional neural network(ConvNet)has a wide application in the classification of motor imagery EEG signals,However,the low sigalto-noise electroencephalogram(EEG)signals are ollectede under th...Purpose-Recently,the convolutional neural network(ConvNet)has a wide application in the classification of motor imagery EEG signals,However,the low sigalto-noise electroencephalogram(EEG)signals are ollectede under the interference of noises.However,the conventional ConvNet model cannot directly solve this problem.This study aims to discuss the aforementioned issues.Design/methodology/approach-To solve this problem,this paper adopted a novel residual shrinkage block(RSB)to construct the ComvNet model(RSBConvNet).During the feature extraction from EEG simnals,the proposed RSBConvNet prevented the noise component in EEG signals,and improved the classification accuracy of motor imagery.In the construction of RSBConvNet,the author applied the soft thresholding strategy to prevent the non-related.motor imagery features in EEG sigmals.The soft thresholding was inserted into the residual block(RB),and the suitable threshold for the curent EEG signals distribution can be learned by minimizing the loss function.Therefore,during the feature extraction of motor imagery,the proposed RSBConvNet de noised the EEG signals and improved the discriminative of dassifiation features.Findings-Comparative experiments and ablation studies were done on two public benchumark datasets.Compared with conventionalConvNet models,the proposed RSBConvNet model has olbvious improvements in motor imagery classification accuracy and Kappa officient.Ablation studies have also shown the de noised abilities of the RSBConvNet modeL Morbover,different parameters and computational methods of the RSBConvNet model have been tested om the dassificatiton of motor imagery.Originality/value-Based ou the experimental results,the RSBComvNet constructed in this paper has an excellent reogmition accuracy of M-BCI which can be used for further appications for the online MI-BCI.展开更多
Particles,particle aggregates,and reactor walls complicate the dynamic microstructures of circulating fluidized beds(CFBs).Using local solids concentration data from a 10-m-high and 76.2-mm-inner-diameter riser with F...Particles,particle aggregates,and reactor walls complicate the dynamic microstructures of circulating fluidized beds(CFBs).Using local solids concentration data from a 10-m-high and 76.2-mm-inner-diameter riser with FCC(Fluid Catalytic Cracking)particles(dp=67μm,ρp=1500 kg/m^3),this paper presents an improved denoising process for use before nonlinear chaos analysis.Using the soft-threshold denoising method in the wavelet domain with experimental empty bed signals as base data to estimate the denoising threshold,an efficient denoising algorithm was proposed and used for the dynamic signals in CFBs.Analysis shows that for the local solids concentration time series,high-frequency fluctuations may be one of the system properties,while noise interference can also make a low-frequency contribution.An exact denoising method is needed in such cases.The correlation dimension and Kolmogorov entropy were calculated using denoised data and the results showed that the particle behavior in the CFB is highly complex.Generally,two correlation dimensions coexist in a low-flux CFB.The first correlation dimension is low and corresponds to small-scale fluctuations that reveal a high-frequency pseudo-periodic movement,but the second correlation dimension is high and corresponds to large-scale fluctuations that indicate multi-frequency movements,including particle aggregation and breakage.At the same axial level,the first correlation dimensions change slightly with radial position,and the main tendency is high at the center but slightly lower near the wall.However,the second correlation dimensions show large changes along the radial direction,are again high in the core region,and after r/R≥0.6(r as radial position,R as radius of the riser),the dimensions clearly drop down.This indicates that the particle behavior is more complex and has higher degrees of freedom at the center,but clusters near the wall are restrained to some degree because of wall effects.展开更多
An effective de-noising method for fiber optic gyroscopes (FOGs) is proposed. This method is based on second-generation Daubechies D4 (DB4) wavelet transform (WT) and level-dependent threshold estimator called S...An effective de-noising method for fiber optic gyroscopes (FOGs) is proposed. This method is based on second-generation Daubechies D4 (DB4) wavelet transform (WT) and level-dependent threshold estimator called Stein's unbiased risk estimator (SURE). The whole approach consists of three critical parts: wavelet decomposition module, parameters estimation module and SURE de-noising module. First, DB4 wavelet is selected as lifting base of the second-generation wavelet in the decomposition module. Second, in the parameters estimation module, maximum likelihood estimation (MLE) is used for stochastic noise parameters estimation. Third, combined with soft threshold de-noising technique, the SURE de-noising module is designed. For comparison, both the traditional universal threshold wavelet and the second-generation Harr wavelet method are also investigated. The experiment results show that the computation cost is 40% less than that of the traditional wavelet method. The standard deviation of de-noised FOG signal is 0.012 and the three noise terms such as angle random walk, bias instability and quantization noise are reduced to 0.007 2°/√h, 0.004 1° / h, and 0.008 1°, respectively.展开更多
基金supported by the National Natural Science Foundation of China(61971007&61571013).
文摘With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.
基金Supported by the National Natural Science Foundation ofChina(No.61271240)Jiangsu Province Natural Science Fund Project(No.BK2010077)Subject of Twelfth Five Years Plans in Jiangsu Second Normal University(No.417103)
文摘Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.
文摘In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation.
基金supported by the National Natural Science Foundation of China(No.42174090 and No.42250103)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(No.MSFGPMR2022-4)+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB2023ZR02)the Fundamental Research Funds for the Central Universities。
文摘Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data.
基金supported by National Key R&D Program of China (No. 2018YFA0702502)NSFC (Grant No. 41974142, 42074129, and 41674114)+1 种基金Science Foundation of China University of Petroleum (Beijing) (Grant No. 2462020YXZZ005)State Key Laboratory of Petroleum Resources and Prospecting (Grant No. PRP/indep-42012)。
文摘Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.
基金Projects(61203287,61302138,11126274)supported by the National Natural Science Foundation of ChinaProject(2013CFB414)supported by Natural Science Foundation of Hubei Province,ChinaProject(CUGL130247)supported by the Special Fund for Basic Scientific Research of Central Colleges of China University of Geosciences
文摘A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.
基金the National Natural Science Foundation of China(No.U20B2038,No.61871398,NO.61901520 and No.61931011)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Key R&D Program of China under Grant 2018YFB1801103.
文摘Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.
基金This work was supported by the Education and Scientific Research Project for Young and Middle-aged Teachers in Fujian Province(No.JAT200581)。
文摘Purpose-Recently,the convolutional neural network(ConvNet)has a wide application in the classification of motor imagery EEG signals,However,the low sigalto-noise electroencephalogram(EEG)signals are ollectede under the interference of noises.However,the conventional ConvNet model cannot directly solve this problem.This study aims to discuss the aforementioned issues.Design/methodology/approach-To solve this problem,this paper adopted a novel residual shrinkage block(RSB)to construct the ComvNet model(RSBConvNet).During the feature extraction from EEG simnals,the proposed RSBConvNet prevented the noise component in EEG signals,and improved the classification accuracy of motor imagery.In the construction of RSBConvNet,the author applied the soft thresholding strategy to prevent the non-related.motor imagery features in EEG sigmals.The soft thresholding was inserted into the residual block(RB),and the suitable threshold for the curent EEG signals distribution can be learned by minimizing the loss function.Therefore,during the feature extraction of motor imagery,the proposed RSBConvNet de noised the EEG signals and improved the discriminative of dassifiation features.Findings-Comparative experiments and ablation studies were done on two public benchumark datasets.Compared with conventionalConvNet models,the proposed RSBConvNet model has olbvious improvements in motor imagery classification accuracy and Kappa officient.Ablation studies have also shown the de noised abilities of the RSBConvNet modeL Morbover,different parameters and computational methods of the RSBConvNet model have been tested om the dassificatiton of motor imagery.Originality/value-Based ou the experimental results,the RSBComvNet constructed in this paper has an excellent reogmition accuracy of M-BCI which can be used for further appications for the online MI-BCI.
文摘Particles,particle aggregates,and reactor walls complicate the dynamic microstructures of circulating fluidized beds(CFBs).Using local solids concentration data from a 10-m-high and 76.2-mm-inner-diameter riser with FCC(Fluid Catalytic Cracking)particles(dp=67μm,ρp=1500 kg/m^3),this paper presents an improved denoising process for use before nonlinear chaos analysis.Using the soft-threshold denoising method in the wavelet domain with experimental empty bed signals as base data to estimate the denoising threshold,an efficient denoising algorithm was proposed and used for the dynamic signals in CFBs.Analysis shows that for the local solids concentration time series,high-frequency fluctuations may be one of the system properties,while noise interference can also make a low-frequency contribution.An exact denoising method is needed in such cases.The correlation dimension and Kolmogorov entropy were calculated using denoised data and the results showed that the particle behavior in the CFB is highly complex.Generally,two correlation dimensions coexist in a low-flux CFB.The first correlation dimension is low and corresponds to small-scale fluctuations that reveal a high-frequency pseudo-periodic movement,but the second correlation dimension is high and corresponds to large-scale fluctuations that indicate multi-frequency movements,including particle aggregation and breakage.At the same axial level,the first correlation dimensions change slightly with radial position,and the main tendency is high at the center but slightly lower near the wall.However,the second correlation dimensions show large changes along the radial direction,are again high in the core region,and after r/R≥0.6(r as radial position,R as radius of the riser),the dimensions clearly drop down.This indicates that the particle behavior is more complex and has higher degrees of freedom at the center,but clusters near the wall are restrained to some degree because of wall effects.
基金Supported by the Aerospace Science and Technology Innovation Foundation of China (2006)
文摘An effective de-noising method for fiber optic gyroscopes (FOGs) is proposed. This method is based on second-generation Daubechies D4 (DB4) wavelet transform (WT) and level-dependent threshold estimator called Stein's unbiased risk estimator (SURE). The whole approach consists of three critical parts: wavelet decomposition module, parameters estimation module and SURE de-noising module. First, DB4 wavelet is selected as lifting base of the second-generation wavelet in the decomposition module. Second, in the parameters estimation module, maximum likelihood estimation (MLE) is used for stochastic noise parameters estimation. Third, combined with soft threshold de-noising technique, the SURE de-noising module is designed. For comparison, both the traditional universal threshold wavelet and the second-generation Harr wavelet method are also investigated. The experiment results show that the computation cost is 40% less than that of the traditional wavelet method. The standard deviation of de-noised FOG signal is 0.012 and the three noise terms such as angle random walk, bias instability and quantization noise are reduced to 0.007 2°/√h, 0.004 1° / h, and 0.008 1°, respectively.