In radio receivers,complete implementation of the software defined radio(SDR) concept is mainly limited by frontend.Based on bandpass sampling(BPS) theory,a flexible digital frontend(DFE) platform for SDR receiver is ...In radio receivers,complete implementation of the software defined radio(SDR) concept is mainly limited by frontend.Based on bandpass sampling(BPS) theory,a flexible digital frontend(DFE) platform for SDR receiver is designed.In order to increase the processing speed,Gigabit Ethernet was applied in the platform at speed of 5×10~8 bit/s.By appropriate design of interpolant according to the position of input RF signals,multi-band receiving can be realized in the platform with suppression more than 35 d B without changing hardware.展开更多
Modern handheld target detection methods are typically restricted to line of sight (LOS) techniques. The design of a new method to detect moving targets through non-transparent surfaces could greatly aid the safety ...Modern handheld target detection methods are typically restricted to line of sight (LOS) techniques. The design of a new method to detect moving targets through non-transparent surfaces could greatly aid the safety of hazardous military and government operations. In this paper, we develop through-wall virtual imaging using Wi-Fi enabled software defined radio to see moving objects and their relative locations. We use LabVIEW and NI Universal Software Radio Peripheral (NI USRP2921 radios with Ettus Research LP0965 directive antennas) devices to detect moving objects behind walls by sending and receiving a signal with respect to the USRP's location. Based on the signal-to-interference ratio of our signal (rather than the traditional signal-to-noise method), we could determine the target object behind the wall. The two major applications for this project are: detecting an active shooter that is standing on the other side of the wall and detecting abnormalities in the human body such as breast cancer with more sensitive antennas. Likewise, firefighters, law enforcement officers, and military men would find more practical purposes for the use of this system in their fields. We evaluate the proposed model using experimental results.展开更多
Software Defined Radio (SDR) architecture allows us to integrate different mobile technologies using common hardware but with different software modules. To achieve this, we need to keep the signal in digital form for...Software Defined Radio (SDR) architecture allows us to integrate different mobile technologies using common hardware but with different software modules. To achieve this, we need to keep the signal in digital form for as much portion of the circuitry as possible, so that the implementation could be carried out by programmable digital processors. For this purpose, the incoming radio frequency (RF) signal is down converted to baseband spectrum using band pass sampling method. Research works carried out so far in this field have developed a few algorithms for band pass sampling. But, these algorithms are not much useful for most of the mobile communication systems and they use complex methodology for computing the sampling frequency values. In order to use the SDR platform to integrate all current wireless technologies, an efficient, cost effective and less complex algorithm that can be labelled as universal band pass sampling algorithm is developed in this paper for multiple mobile systems. This algorithm is based on a novel idea of inserting guard bands between the signals which reduces the design complexities of perfect ADC and sharp cut off filters. Using this algorithm, valid sampling frequency ranges and corresponding IF values are calculated for down converting RF signals. The algorithm is tested for six RF signals of different wireless technologies which are integrated and simultaneously down converted using SDR based front end receiver and thus the system multiplies the base station capacity by a factor of six. The simulation results are obtained and shown in this paper which proves that the algorithm developed works well for most of the wireless technologies.展开更多
This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes...This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes a variable gain amplifier and DC offset cancellation circuits.The cutoff frequency of the DC offset cancellation circuits can be changed from 4 to 80 kHz.The chip was fabricated in 0.13μm CMOS technology. Measurement results showed that the gain of the PGA can be programmed from -5 to 60 dB.At the gain setting of 60 dB,the bandwidth can be tuned from 1 to 10 MHz,while the power consumption can be programmed from 850μA to 3.2 mA at a supply voltage of 1.2 V.Its in-band OIP3 result is at 14 dBm.展开更多
Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processin...Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processing. Such system can help accelerate research and development of future wireless network, especially in the case of cellular/Wi-Fi co-existing networks. This platform is based on the Intel general-purpose processor and the universal software radio peripheral(USRP) radio front end. The design including the physical layer implementations is purely software and is optimized for real-time signal processing on the general purpose processor. In the lab experiment, this platform supports baseband rate up to 700 Mbps with 2 transmitters in 80 MHz bandwidth. A cellular-Wi-Fi signaling interface between the Wi-Fi access point(AP) and the 5G core network is also developed and validated as an example for wireless resource allocation.展开更多
This paper aims to present a digital radio broadcasting system that explores the advantages of pseudo-random codes. In this context, a transmitter and its dual receiver are able to reuse frequency spectrum bands witho...This paper aims to present a digital radio broadcasting system that explores the advantages of pseudo-random codes. In this context, a transmitter and its dual receiver are able to reuse frequency spectrum bands without interfering on other existing communication systems. It is proposed a communication system that allows radio broadcasting with the following characteristics: lower transmission power, new communication channels and digital signal processing techinques to add positioning services in two dimensions.展开更多
Channelization typically realized by digital filter banks is an important topic in high frequency(HF) communication and software defined radios(SDR) areas. Channelization has a rigorous requirement for the characteris...Channelization typically realized by digital filter banks is an important topic in high frequency(HF) communication and software defined radios(SDR) areas. Channelization has a rigorous requirement for the characteristic of frequency response, e.g., steep transitional band and sharp decay. To address this issue, we investigated the feasibility and implementation of applying fast filter bank(FFB) in channelization in this paper. We analyzed the butterfly structure of FFB similar with fast Fourier transform(FFT), in which prototype sub-filters are cascaded to achieve a low complexity. Hence, it is suitable for designing filter bank with steep transitional band and sharp decay in stop-band. Moreover, we designed a pipelined structure of FFB to achieve a balance between area and performance. Design example shows that FFB has lower computational complexity compared with the other filter banks.展开更多
Some structures of digital quadrature AD conversion for soft-ware-defined radio (SDR) systems are studied. Their performances and affections on the SDR systems are also analyzed. Two generalized quadrature AD scheme...Some structures of digital quadrature AD conversion for soft-ware-defined radio (SDR) systems are studied. Their performances and affections on the SDR systems are also analyzed. Two generalized quadrature AD schemes are proposed. In one of them, the AD sampling speed can be reduced by 2 times; and in the other both the output data rate of every channel and AD sampling speed can be lowered by paralleling the digital quadrature filtering structure. These structures can be also easily implemented into modules, and the polyphase filters can be flexibly realized by VHDL language based one chip of FPGA. To assess the proposed schemes, their applications to a particular ultra wideband (UWB) demonstrative receiver system are introduced. Some experimental results are also given. It is shown that the generalized quadrature AD structures are reliable and feasible for its module design, and performances are improved obviously for its better performance to price ratio.展开更多
This pilot study focuses on a real measurements and enhancements of a software defined radio-based system for vehicle-to everything visible light communication(SDR-V2X-VLC).The presented system is based on a novel ada...This pilot study focuses on a real measurements and enhancements of a software defined radio-based system for vehicle-to everything visible light communication(SDR-V2X-VLC).The presented system is based on a novel adaptive optimization of the feed-forward software defined equalization(FFSDE)methods of the least mean squares(LMS),normalized LMS(NLMS)and QR decomposition-based recursive least squares(QR-RLS)algorithms.Individual parameters of adaptive equalizations are adjusted in real-time to reach the best possible results.Experiments were carried out on a conventional LED Octavia III taillight drafted directly from production line and universal software radio peripherals(USRP)from National Instruments.The transmitting/receiving elements used multistate quadrature amplitude modulation(M-QAM)implemented in LabVIEW programming environment.Experimental results were verified based on bit error ratio(BER),error vector magnitude(EVM)and modulation error ratio(MER).Experimental results of the pilot study unambiguously confirmed the effectiveness of the proposed solution(longer effective communication range,higher immunity to interference,deployment of higher state QAM modulation formats,higher transmission speeds etc.),as the adaptive equalization significantly improved BER,MER and EVM parameters.The best results were achieved using the QR-RLS algorithm.The results measured on deployed QR-RLS algorithm had significantly better Eb/N0(improved by approx.20 dB)and BER values(difference by up to two orders of magnitude).展开更多
Base station power consumption is the biggest power issue concerning wireless networks. Saving power in base stations is therefore the primary focus in green wireless network development. This paper discusses green ba...Base station power consumption is the biggest power issue concerning wireless networks. Saving power in base stations is therefore the primary focus in green wireless network development. This paper discusses green base stations in terms of system architecture, base station form, power saving technologies, and green technology applications. It explores effective ways of reducing power consumption in base stations.展开更多
A novel architecture for computing the fast Fourier transform ( FFT ) on programmable devices is presented.To improve the system operation speed , a hybrid parallel FFT algorithm is used.Results indicate that the use ...A novel architecture for computing the fast Fourier transform ( FFT ) on programmable devices is presented.To improve the system operation speed , a hybrid parallel FFT algorithm is used.Results indicate that the use of an 8×8parallel structure for realizing the 64-point FFT leads to a 8times higher processing speed compared with its counterparts employing other series of techniques.展开更多
A real-time ray-based hardware emulator for Unmanned Aerial Vehicle(UAV) communication channels which suits for the Three-Dimensional(3D) dynamic scenarios and considers the movements of both terminals is developed in...A real-time ray-based hardware emulator for Unmanned Aerial Vehicle(UAV) communication channels which suits for the Three-Dimensional(3D) dynamic scenarios and considers the movements of both terminals is developed in this paper. The time-variant channel parameters, i.e.,ray delay, ray gain, and ray Doppler frequency are precalculated in the host by using the Ray Tracing(RT) method. Meanwhile, RT simulation dramatically increases the number of valid rays. To address the problem of resource limitation and huge computational burden in the implementation,an efficient ray coefficients generation method based on iteration is proposed and implemented.With the advantages of low cost and high flexibility, a Software Defined Radio(SDR) hardware platform is used to emulate the ray-based UAV channels by utilizing the compact architecture including the Time-Division(TD) scheme and Tapped-Delay Line(TDL) for channel convolution.Finally, hardware measurement results demonstrate that the properties of emulated channel, i.e.,Power Delay Profile(PDP) and Doppler Power Spectrum Density(DPSD) consist with the simulated ones, which verifies the correctness of hardware implementation. The proposed channel emulator provides an efficient way for optimization, verification, and evaluation of UAV communication systems.展开更多
The ability to effortlessly construct and broadcast false messages makes IEEE 802.11 wireless networks particularly vulnerable to attack.False frame generation allows rogue devices to impersonate an authorized user an...The ability to effortlessly construct and broadcast false messages makes IEEE 802.11 wireless networks particularly vulnerable to attack.False frame generation allows rogue devices to impersonate an authorized user and issue commands that impact the user’s network connection or possibly the entire network’s security.Unfortunately,the current device impersonation detection methods are unsuitable for small devices or real-time applications.Our contribution is to demonstrate that a rule-based learning classifier using several random forest(RF)features from an IEEE 802.11 frame can determine the probability that an impersonating device has generated that frame in real time.Our main innovation is a processing pipeline,and the algorithm that implements concurrent one-class classifiers on a per device basis yet is lightweight enough to run directly on a wireless access point(WAP)and produce real-time outputs.展开更多
基金Project(2013QNA49)supported by the Fundamental Research Funds for the Central Universities,China
文摘In radio receivers,complete implementation of the software defined radio(SDR) concept is mainly limited by frontend.Based on bandpass sampling(BPS) theory,a flexible digital frontend(DFE) platform for SDR receiver is designed.In order to increase the processing speed,Gigabit Ethernet was applied in the platform at speed of 5×10~8 bit/s.By appropriate design of interpolant according to the position of input RF signals,multi-band receiving can be realized in the platform with suppression more than 35 d B without changing hardware.
基金Acknowledgements This work was supported in part by the U.S. National Science Foundation (NSF) under grants CNS-1405670 and CN5-1658972. However, any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSE
文摘Modern handheld target detection methods are typically restricted to line of sight (LOS) techniques. The design of a new method to detect moving targets through non-transparent surfaces could greatly aid the safety of hazardous military and government operations. In this paper, we develop through-wall virtual imaging using Wi-Fi enabled software defined radio to see moving objects and their relative locations. We use LabVIEW and NI Universal Software Radio Peripheral (NI USRP2921 radios with Ettus Research LP0965 directive antennas) devices to detect moving objects behind walls by sending and receiving a signal with respect to the USRP's location. Based on the signal-to-interference ratio of our signal (rather than the traditional signal-to-noise method), we could determine the target object behind the wall. The two major applications for this project are: detecting an active shooter that is standing on the other side of the wall and detecting abnormalities in the human body such as breast cancer with more sensitive antennas. Likewise, firefighters, law enforcement officers, and military men would find more practical purposes for the use of this system in their fields. We evaluate the proposed model using experimental results.
文摘Software Defined Radio (SDR) architecture allows us to integrate different mobile technologies using common hardware but with different software modules. To achieve this, we need to keep the signal in digital form for as much portion of the circuitry as possible, so that the implementation could be carried out by programmable digital processors. For this purpose, the incoming radio frequency (RF) signal is down converted to baseband spectrum using band pass sampling method. Research works carried out so far in this field have developed a few algorithms for band pass sampling. But, these algorithms are not much useful for most of the mobile communication systems and they use complex methodology for computing the sampling frequency values. In order to use the SDR platform to integrate all current wireless technologies, an efficient, cost effective and less complex algorithm that can be labelled as universal band pass sampling algorithm is developed in this paper for multiple mobile systems. This algorithm is based on a novel idea of inserting guard bands between the signals which reduces the design complexities of perfect ADC and sharp cut off filters. Using this algorithm, valid sampling frequency ranges and corresponding IF values are calculated for down converting RF signals. The algorithm is tested for six RF signals of different wireless technologies which are integrated and simultaneously down converted using SDR based front end receiver and thus the system multiplies the base station capacity by a factor of six. The simulation results are obtained and shown in this paper which proves that the algorithm developed works well for most of the wireless technologies.
基金Project supported by the National High-Tech Research and Development Program of China(No.2009AA011606)the National Natural Science Foundation of China(No.60976023)
文摘This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes a variable gain amplifier and DC offset cancellation circuits.The cutoff frequency of the DC offset cancellation circuits can be changed from 4 to 80 kHz.The chip was fabricated in 0.13μm CMOS technology. Measurement results showed that the gain of the PGA can be programmed from -5 to 60 dB.At the gain setting of 60 dB,the bandwidth can be tuned from 1 to 10 MHz,while the power consumption can be programmed from 850μA to 3.2 mA at a supply voltage of 1.2 V.Its in-band OIP3 result is at 14 dBm.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61671436the Science and Technology Commission Foundation of Shanghai under Grant No. 15511102602, 16511104204
文摘Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processing. Such system can help accelerate research and development of future wireless network, especially in the case of cellular/Wi-Fi co-existing networks. This platform is based on the Intel general-purpose processor and the universal software radio peripheral(USRP) radio front end. The design including the physical layer implementations is purely software and is optimized for real-time signal processing on the general purpose processor. In the lab experiment, this platform supports baseband rate up to 700 Mbps with 2 transmitters in 80 MHz bandwidth. A cellular-Wi-Fi signaling interface between the Wi-Fi access point(AP) and the 5G core network is also developed and validated as an example for wireless resource allocation.
文摘This paper aims to present a digital radio broadcasting system that explores the advantages of pseudo-random codes. In this context, a transmitter and its dual receiver are able to reuse frequency spectrum bands without interfering on other existing communication systems. It is proposed a communication system that allows radio broadcasting with the following characteristics: lower transmission power, new communication channels and digital signal processing techinques to add positioning services in two dimensions.
基金supported in part by the National Natural Science Foundation of China under Grant 61601477, and 61601480
文摘Channelization typically realized by digital filter banks is an important topic in high frequency(HF) communication and software defined radios(SDR) areas. Channelization has a rigorous requirement for the characteristic of frequency response, e.g., steep transitional band and sharp decay. To address this issue, we investigated the feasibility and implementation of applying fast filter bank(FFB) in channelization in this paper. We analyzed the butterfly structure of FFB similar with fast Fourier transform(FFT), in which prototype sub-filters are cascaded to achieve a low complexity. Hence, it is suitable for designing filter bank with steep transitional band and sharp decay in stop-band. Moreover, we designed a pipelined structure of FFB to achieve a balance between area and performance. Design example shows that FFB has lower computational complexity compared with the other filter banks.
基金This project was part financially supported by Natural Science Researching Project for Jiangsu Universities (03KJB510130, 05KJD510177 and NSFC.60572075).
文摘Some structures of digital quadrature AD conversion for soft-ware-defined radio (SDR) systems are studied. Their performances and affections on the SDR systems are also analyzed. Two generalized quadrature AD schemes are proposed. In one of them, the AD sampling speed can be reduced by 2 times; and in the other both the output data rate of every channel and AD sampling speed can be lowered by paralleling the digital quadrature filtering structure. These structures can be also easily implemented into modules, and the polyphase filters can be flexibly realized by VHDL language based one chip of FPGA. To assess the proposed schemes, their applications to a particular ultra wideband (UWB) demonstrative receiver system are introduced. Some experimental results are also given. It is shown that the generalized quadrature AD structures are reliable and feasible for its module design, and performances are improved obviously for its better performance to price ratio.
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project,Project Number CZ.02.1.01/0.0/0.0/16_019/0000867 and by 543 the Ministry of Education of the Czech Republic,Project No.SP2021/32.
文摘This pilot study focuses on a real measurements and enhancements of a software defined radio-based system for vehicle-to everything visible light communication(SDR-V2X-VLC).The presented system is based on a novel adaptive optimization of the feed-forward software defined equalization(FFSDE)methods of the least mean squares(LMS),normalized LMS(NLMS)and QR decomposition-based recursive least squares(QR-RLS)algorithms.Individual parameters of adaptive equalizations are adjusted in real-time to reach the best possible results.Experiments were carried out on a conventional LED Octavia III taillight drafted directly from production line and universal software radio peripherals(USRP)from National Instruments.The transmitting/receiving elements used multistate quadrature amplitude modulation(M-QAM)implemented in LabVIEW programming environment.Experimental results were verified based on bit error ratio(BER),error vector magnitude(EVM)and modulation error ratio(MER).Experimental results of the pilot study unambiguously confirmed the effectiveness of the proposed solution(longer effective communication range,higher immunity to interference,deployment of higher state QAM modulation formats,higher transmission speeds etc.),as the adaptive equalization significantly improved BER,MER and EVM parameters.The best results were achieved using the QR-RLS algorithm.The results measured on deployed QR-RLS algorithm had significantly better Eb/N0(improved by approx.20 dB)and BER values(difference by up to two orders of magnitude).
文摘Base station power consumption is the biggest power issue concerning wireless networks. Saving power in base stations is therefore the primary focus in green wireless network development. This paper discusses green base stations in terms of system architecture, base station form, power saving technologies, and green technology applications. It explores effective ways of reducing power consumption in base stations.
基金Supported by the National Natural Science Foundation of China(60801052)the Aeronautical Science Foundation of China(2009ZC52036)+1 种基金the Ph.D.Programs Foundation of China's Ministry of Education(200802871056)the Nanjing University of Aeronautics & Astronautics Research Funding(NS2010109,NS2010114)
文摘A novel architecture for computing the fast Fourier transform ( FFT ) on programmable devices is presented.To improve the system operation speed , a hybrid parallel FFT algorithm is used.Results indicate that the use of an 8×8parallel structure for realizing the 64-point FFT leads to a 8times higher processing speed compared with its counterparts employing other series of techniques.
基金supported in part by CEMEE State Key Laboratory Fund(No.2020Z0207B)in part by the National Key Scientific Instrument and Equipment Development Project,China(No.61827801)+1 种基金in part by the State Key Laboratory of Integrated Services Networks Fund,China(No.ISN22-11)in part by the Fundamental Research Funds for the Central Universities,China(Nos.NS2020026 and NS2020063)。
文摘A real-time ray-based hardware emulator for Unmanned Aerial Vehicle(UAV) communication channels which suits for the Three-Dimensional(3D) dynamic scenarios and considers the movements of both terminals is developed in this paper. The time-variant channel parameters, i.e.,ray delay, ray gain, and ray Doppler frequency are precalculated in the host by using the Ray Tracing(RT) method. Meanwhile, RT simulation dramatically increases the number of valid rays. To address the problem of resource limitation and huge computational burden in the implementation,an efficient ray coefficients generation method based on iteration is proposed and implemented.With the advantages of low cost and high flexibility, a Software Defined Radio(SDR) hardware platform is used to emulate the ray-based UAV channels by utilizing the compact architecture including the Time-Division(TD) scheme and Tapped-Delay Line(TDL) for channel convolution.Finally, hardware measurement results demonstrate that the properties of emulated channel, i.e.,Power Delay Profile(PDP) and Doppler Power Spectrum Density(DPSD) consist with the simulated ones, which verifies the correctness of hardware implementation. The proposed channel emulator provides an efficient way for optimization, verification, and evaluation of UAV communication systems.
文摘The ability to effortlessly construct and broadcast false messages makes IEEE 802.11 wireless networks particularly vulnerable to attack.False frame generation allows rogue devices to impersonate an authorized user and issue commands that impact the user’s network connection or possibly the entire network’s security.Unfortunately,the current device impersonation detection methods are unsuitable for small devices or real-time applications.Our contribution is to demonstrate that a rule-based learning classifier using several random forest(RF)features from an IEEE 802.11 frame can determine the probability that an impersonating device has generated that frame in real time.Our main innovation is a processing pipeline,and the algorithm that implements concurrent one-class classifiers on a per device basis yet is lightweight enough to run directly on a wireless access point(WAP)and produce real-time outputs.