Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the cataly...Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the catalyst calcined at 300℃, two kinds of CuO species coexist on the surface, that is, highly dispersed and bulk CuO crystalline phase. Four kinds of CuO species are present for the catalyst calcined at 600 ℃, : (1) highly dispersed CuO, (2) bulk CuO on the surface, (3) bulk CuO in the internal layer of CeO2, and (4) CuAl2O4 formed from CuO-Al2O3 interaction. For the catalyst calcined at 800 ℃,C, besides very little highly dispersed and bulk CuO on the surface, most of the CuO has transferred into the internal layer of CeO2 and the mass of CuAl2O4 are increased. At 900 ℃,, all of CuO has diffused into the internal layer of CeO2 and formed CuAl2O4. The results show that the distribution of CuO species in the catalysts depends on the calcination temperature; the different CuO species can be effectively confirmed by in-situ XRD, Raman spectroscopy and H2-TPR techniques.展开更多
Sohd-solid reaction under low heat or low temperature is an approach to synthesize various kinds of materials that were widely used in electrochemistry field. In this paper a theoretical treatment has been presented f...Sohd-solid reaction under low heat or low temperature is an approach to synthesize various kinds of materials that were widely used in electrochemistry field. In this paper a theoretical treatment has been presented for analyzing the mechanism of sohd-solid reaction and deriving a series of formulae to describe the variation and rate of reactions. This new model has been used in the manufacturing of spinel Li4Ti5O12. The results show that this new model works very well and will play a useful role for guiding the manufacturing of electrochemical materials.展开更多
The solid-solid electrode-electrolyte interface represents an important component in solid-state batteries(SSBs),as ionic diffusion,reaction,transformation,and restructuring could all take place.As these processes str...The solid-solid electrode-electrolyte interface represents an important component in solid-state batteries(SSBs),as ionic diffusion,reaction,transformation,and restructuring could all take place.As these processes strongly influence the battery performance,studying the evolution of the solid-solid interfaces,particularly in situ during battery operation,can provide insights to establish the structure-property relationship for SSBs.Synchrotron X-ray techniques,owing to their unique penetration power and diverse approaches,are suitable to investigate the buried interfaces and examine structural,compositional,and morphological changes.In this review,we will discuss various surface-sensitive synchrotron-based scattering,spectroscopy,and imaging methods for the in situ characterization of solid-solid interfaces and how this information can be correlated to the electrochemical properties of SSBs.The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples,so that similar strategies can be applied by battery researchers and beyond to study similar solid-solid interface systems.展开更多
In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characterist...In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy~ PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.展开更多
At present, there is considerable interest in polymer-metal chalcogenides/oxides based nano-composites on account of their tunable optical, magnetic, electronic and catalytic properties. Here in, we report a simple si...At present, there is considerable interest in polymer-metal chalcogenides/oxides based nano-composites on account of their tunable optical, magnetic, electronic and catalytic properties. Here in, we report a simple single step approach for the in-situ synthesis of combined cobalt sulphide/cobalt oxide in polyphenylenesulphide (PPS) polymer matrix. We have illustrated the suitability of this methodology by reacting commonly available cobalt precursors with engineering thermoplastic, PPS. The cobalt precursor was homogeneously mixed with PPS in the molar ratios of 1:1, 1:5, 1:10, 1:15, respectively, followed by heating the mixtures obtained at the melting temperature of the polymer (285?C) for six hours. The resultant products were characterized by X-ray Diffractometry (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Diffuse Reflectance Spectroscopy (DRS) technique and Fourier Transformation Infra red Spectroscopy (FTIR). Formation of mixed phases viz., sulphide and oxide of cobalt within modified PPS matrix was confirmed by XRD. The resultant nanoparticles of cobalt sulphide and cobalt oxide embedded in the PPS matrix showed crooked and chunk morphology. The optical properties of the resultant nanocomposites indicate the shift in the absorption hump due to nanoscale size effect.展开更多
A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A ...A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell's theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches.展开更多
Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanoge...Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanogenerators(TENGs) have gained significant attention for harvesting waveenergy with high efficiency. This study presents a novelellipsoidal, pendulum-like TENG integrating both liquid-liquid(L-L) and solid-solid (S-S) triboelectricity (LS-TENG). Thisinnovative design enables continuous wave energy harvestingand self-powered marine environment monitoring under variousconditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s innersoft balloon create dynamic, and self-adjustable L-L contact interfaces, significantly increasing the L-L contact area andenhancing L-L contact electrification (CE). The unique self-adaptive, soft S-S contact increases the S-S contact areacompared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S-SCE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L-L and S-S CE. Furthermore, the uniquesoft contact design protects the S-S interfaces from mechanical wear and damage during long-term work. The LS-TENG’snovel structure provides an innovative and effective way for water wave energy harvesting.展开更多
The practicality of conventional solid-liquid phase change materials(PCMs)is adversely restricted by liquid phase leakage,large volume expansion,shape instability,and severe corrosion in high-temperature thermal manag...The practicality of conventional solid-liquid phase change materials(PCMs)is adversely restricted by liquid phase leakage,large volume expansion,shape instability,and severe corrosion in high-temperature thermal management systems.This highlight presents the latest development to resolve these challenges by designing ultrahigh-performance high-temperature Ni-Mn-Ti solid-solid PCMs using martensitic phase transition strategy,offering a new paradigm to develop advanced wide-temperature high-temperature metallic solid-solid phase change thermal storage materials.展开更多
In this work,shape-stabilized solid-solid phase change materials(PCMs)were fabricated by simply electrospinning polyethylene glycol(PEG)and polyvinyl alcohol(PVA).Owing to the strong hydrogen bonds and entanglement be...In this work,shape-stabilized solid-solid phase change materials(PCMs)were fabricated by simply electrospinning polyethylene glycol(PEG)and polyvinyl alcohol(PVA).Owing to the strong hydrogen bonds and entanglement between those molecular chains of PEG and PVA,PEG was packaged by PVA.The morphological structures,thermal stability and thermal energy storage properties of those fibers were investigated.SEM results showed that those electrospun PVA/PEG composite membranes hold a three-dimensional nonwoven web structure even the content of PEG as high as 70%.The thermal energy storage ability of those composite fibers increased with the increase of the content of PEG.The heat enthalpies of PEG/PVA=7/3 were as high as 78.806 J/g.Moreover,those composite fibers had excellent thermal stability.After 100 heating and cooling cycles,there was almost no obvious change in the melting enthalpy and crystallization enthalpy.Those fibers still maintained good thermal regulation.The simple preparation process,low cost of raw materials and excellent stability endow the PCMs great utilization potentiality in smart textile and energy storage systems.展开更多
文摘Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the catalyst calcined at 300℃, two kinds of CuO species coexist on the surface, that is, highly dispersed and bulk CuO crystalline phase. Four kinds of CuO species are present for the catalyst calcined at 600 ℃, : (1) highly dispersed CuO, (2) bulk CuO on the surface, (3) bulk CuO in the internal layer of CeO2, and (4) CuAl2O4 formed from CuO-Al2O3 interaction. For the catalyst calcined at 800 ℃,C, besides very little highly dispersed and bulk CuO on the surface, most of the CuO has transferred into the internal layer of CeO2 and the mass of CuAl2O4 are increased. At 900 ℃,, all of CuO has diffused into the internal layer of CeO2 and formed CuAl2O4. The results show that the distribution of CuO species in the catalysts depends on the calcination temperature; the different CuO species can be effectively confirmed by in-situ XRD, Raman spectroscopy and H2-TPR techniques.
文摘Sohd-solid reaction under low heat or low temperature is an approach to synthesize various kinds of materials that were widely used in electrochemistry field. In this paper a theoretical treatment has been presented for analyzing the mechanism of sohd-solid reaction and deriving a series of formulae to describe the variation and rate of reactions. This new model has been used in the manufacturing of spinel Li4Ti5O12. The results show that this new model works very well and will play a useful role for guiding the manufacturing of electrochemical materials.
文摘The solid-solid electrode-electrolyte interface represents an important component in solid-state batteries(SSBs),as ionic diffusion,reaction,transformation,and restructuring could all take place.As these processes strongly influence the battery performance,studying the evolution of the solid-solid interfaces,particularly in situ during battery operation,can provide insights to establish the structure-property relationship for SSBs.Synchrotron X-ray techniques,owing to their unique penetration power and diverse approaches,are suitable to investigate the buried interfaces and examine structural,compositional,and morphological changes.In this review,we will discuss various surface-sensitive synchrotron-based scattering,spectroscopy,and imaging methods for the in situ characterization of solid-solid interfaces and how this information can be correlated to the electrochemical properties of SSBs.The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples,so that similar strategies can be applied by battery researchers and beyond to study similar solid-solid interface systems.
基金supported by Coordination Foundation of Institute of Electronic Engineering,China Academy of Engineering Physics(No.WF2011013)
文摘In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy~ PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.
文摘At present, there is considerable interest in polymer-metal chalcogenides/oxides based nano-composites on account of their tunable optical, magnetic, electronic and catalytic properties. Here in, we report a simple single step approach for the in-situ synthesis of combined cobalt sulphide/cobalt oxide in polyphenylenesulphide (PPS) polymer matrix. We have illustrated the suitability of this methodology by reacting commonly available cobalt precursors with engineering thermoplastic, PPS. The cobalt precursor was homogeneously mixed with PPS in the molar ratios of 1:1, 1:5, 1:10, 1:15, respectively, followed by heating the mixtures obtained at the melting temperature of the polymer (285?C) for six hours. The resultant products were characterized by X-ray Diffractometry (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Diffuse Reflectance Spectroscopy (DRS) technique and Fourier Transformation Infra red Spectroscopy (FTIR). Formation of mixed phases viz., sulphide and oxide of cobalt within modified PPS matrix was confirmed by XRD. The resultant nanoparticles of cobalt sulphide and cobalt oxide embedded in the PPS matrix showed crooked and chunk morphology. The optical properties of the resultant nanocomposites indicate the shift in the absorption hump due to nanoscale size effect.
基金Supported by China Academy of Engineering Physics(Project 2014B05005)
文摘A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell's theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches.
基金support from the National Natural Science Foundation of China(Nos.52173298 and 52192611)the National Key R&D Project from Minister of Science and Technology(No.2021YFA1201603)+1 种基金Beijing Natural Science Foundation(No.Z230024)the Fundamental Research Funds for the Central Universities.
文摘Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanogenerators(TENGs) have gained significant attention for harvesting waveenergy with high efficiency. This study presents a novelellipsoidal, pendulum-like TENG integrating both liquid-liquid(L-L) and solid-solid (S-S) triboelectricity (LS-TENG). Thisinnovative design enables continuous wave energy harvestingand self-powered marine environment monitoring under variousconditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s innersoft balloon create dynamic, and self-adjustable L-L contact interfaces, significantly increasing the L-L contact area andenhancing L-L contact electrification (CE). The unique self-adaptive, soft S-S contact increases the S-S contact areacompared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S-SCE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L-L and S-S CE. Furthermore, the uniquesoft contact design protects the S-S interfaces from mechanical wear and damage during long-term work. The LS-TENG’snovel structure provides an innovative and effective way for water wave energy harvesting.
文摘The practicality of conventional solid-liquid phase change materials(PCMs)is adversely restricted by liquid phase leakage,large volume expansion,shape instability,and severe corrosion in high-temperature thermal management systems.This highlight presents the latest development to resolve these challenges by designing ultrahigh-performance high-temperature Ni-Mn-Ti solid-solid PCMs using martensitic phase transition strategy,offering a new paradigm to develop advanced wide-temperature high-temperature metallic solid-solid phase change thermal storage materials.
基金The project was supported by international cooperation of Prof.Jaromir Marek and Key Program for International S&T Innovation Cooperation Projects of China[2016YFE0131400]This project was supported by the Scientific Research Project of Department of Education of Zhejiang Province[19010035-F]This work was supported by Science Foundation of Zhejiang Sci-Tech University(ZSTU)under Grant No.19012393-Y.
文摘In this work,shape-stabilized solid-solid phase change materials(PCMs)were fabricated by simply electrospinning polyethylene glycol(PEG)and polyvinyl alcohol(PVA).Owing to the strong hydrogen bonds and entanglement between those molecular chains of PEG and PVA,PEG was packaged by PVA.The morphological structures,thermal stability and thermal energy storage properties of those fibers were investigated.SEM results showed that those electrospun PVA/PEG composite membranes hold a three-dimensional nonwoven web structure even the content of PEG as high as 70%.The thermal energy storage ability of those composite fibers increased with the increase of the content of PEG.The heat enthalpies of PEG/PVA=7/3 were as high as 78.806 J/g.Moreover,those composite fibers had excellent thermal stability.After 100 heating and cooling cycles,there was almost no obvious change in the melting enthalpy and crystallization enthalpy.Those fibers still maintained good thermal regulation.The simple preparation process,low cost of raw materials and excellent stability endow the PCMs great utilization potentiality in smart textile and energy storage systems.