Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the ...The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.展开更多
A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM ...A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM unstable-stable hybrid resonator. At an incident pump power of 820 W, a maximum cw output of 240 W at 1064nm is obtained. The optical-to-optical efficiency and Mope efficiency are 40.7% and 53.2%, respectively. The M2 factors in the unstable direction and in the stable direction are 4.38 and 5.44, respectively.展开更多
We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapou...We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.展开更多
Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be...Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be 2.1 kHz within 5μs by using a single mode fiber link.We use the monolithic laser to measure the angular speed of a spinning motor and simulate a linearly frequency modulated continuous-wave ladar system in laboratory.展开更多
A laser diode end-pumped passively mode-locked Nd:YVO4 solid-state laser with a semiconductor saturable ab- sorber mirror (SESAM), in which the intracavity laser beam spot on the SESAM can be adjusted periodically,...A laser diode end-pumped passively mode-locked Nd:YVO4 solid-state laser with a semiconductor saturable ab- sorber mirror (SESAM), in which the intracavity laser beam spot on the SESAM can be adjusted periodically, is investigated. Inserting a rectangular prism (RP) into the laser cavity is a promising approach towards the goal of periodically moving the position of the focus spot of the intracavity pulse on the SESAM surface to avoid the long-time irradiation of the laser beam on the same position, thereby solving a series of problems caused by damage to the SESAM and greatly prolonging its usage life. The adjustment of the rectangular prism in the laser cavity does not break the stable continuous wave (CW) mode-locked condition. The laser generates a stable picosecond pulse sequence at 1064 nm with an output power of 3.6 W and a pulse width of 14 ps. The instabilities of the output power and the pulse width are 1.77% and 4.5%, respectively.展开更多
A maximum of 310mW average output power at 355nm has been obtained by extracavity frequency tripling with a BBO crystal in a Q-switched Nd:YV04 laser with 11.2 W of laser diode pump power. The single pass frequency co...A maximum of 310mW average output power at 355nm has been obtained by extracavity frequency tripling with a BBO crystal in a Q-switched Nd:YV04 laser with 11.2 W of laser diode pump power. The single pass frequency conversion efficiency (infrared-to-ultraviolet) is 14.3%. The power stability of the ultraviolet laser is better than 1% in 30min.展开更多
In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as satur...In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as saturable absorber. The rate equations describing the dynamics of laser action are numerically solved simultaneously with the temperature conductivity heat equation to depict the transient temperature distribution. The study has been performed in the cylindrical coordinates to characterize the temperature distribution in the axial and radial directions. The thermal transient time in both directions as well as the thermal focal length are calculated. The temporal behavior of the temperature distribution has been illustrated in a 3-dimensional diagram.展开更多
We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled,diode-pumped multi-slab Yb:YAG laser operating at 1 Hz.To the best of our knowledge,this is the highest energy ever recorded ...We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled,diode-pumped multi-slab Yb:YAG laser operating at 1 Hz.To the best of our knowledge,this is the highest energy ever recorded for a diodepumped laser system.展开更多
Two-dimensional(2 D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation(LPE) method. The nonlinear optical properties of 2 D Te nanosheets were studied by the open-aperture Z-scan techniqu...Two-dimensional(2 D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation(LPE) method. The nonlinear optical properties of 2 D Te nanosheets were studied by the open-aperture Z-scan technique. Furthermore, the continuous wave mode-locked Nd:YVO4 laser was successfully realized by using 2 D Te as a saturable absorber(SA) for the first time, to the best of our knowledge. Ultrashort pulses as short as 5.8 ps were obtained at 1064.3 nm with an output power of 851 m W. This primary investigation indicates that the 2 D Te SA is a promising photonic device in the fields of ultrafast solid-state lasers.展开更多
Stable,efficient and high color rendering index all-inorganic color converters are urgently demanded for white laser diodes.Phosphor-in-glass(PiG),possessing the advantages of phosphors excellent quantum efficiency as...Stable,efficient and high color rendering index all-inorganic color converters are urgently demanded for white laser diodes.Phosphor-in-glass(PiG),possessing the advantages of phosphors excellent quantum efficiency as well as favorable chemical and thermal stability of glass,has attracted widespread attention.There have been only very few reports of Y_(1.31)Ce_(0.09)Gd_(1.6)Al_(5)O_(12)(Ce:GdYAG)PiG for solid-state laser light-ing.Herein,a series of Ce:GdYAG PiG samples are fabricated by a simple solid-state sintering method.Impressively,the supreme internal quantum efficiency of as-prepared PiG is 91%,which is very close to original phosphors(95%).Furthermore,PiG exhibits a high thermal conductivity(1.844 W m^(−1)K^(−1))and a maximum transparency(62%).Remarkably,by changing the concentration of phosphors and the thickness of PiG samples,a luminous efficacy of 163.5 lm/W,high color rendering index of 74.8 and low correlated color temperature of 4806.8 K are achieved under blue laser irradiation.These results indicate that the Ce:GdYAG PiG samples have shown tremendous application foreground as all-inorganic color converter for solid-state laser lighting.展开更多
In this paper,we reported a multiwavelength passively Q-switched Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as a saturable absorber(SA) for the first time,to the best of our knowledge.Bi2...In this paper,we reported a multiwavelength passively Q-switched Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as a saturable absorber(SA) for the first time,to the best of our knowledge.Bi2Te3 nanosheets were prepared by the facile solvothermal method.The influence of three Bi2Te3 densities on the laser operation was compared.The maximum average output power was up to 57 mW with a pulse energy of 511.7 nJ.The shortest pulsewidth was measured to be 370 ns with 110 kHz pulse repetition rate and 40 mW average power.The laser operated at three wavelengths simultaneously at 1043.7,1045.3,and 1046.2 nm,of which the frequency differences were within the terahertz wave band.Our work suggests that solvothermal synthesized Bi2Te3 is a promising SA for simultaneously multiwavelength laser operation.展开更多
We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be t...We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be tuned from 1874 to 1973 nm, with a tunable wavelength range up to ~100 nm and maximum output power up to 1.35 W. The bandwidth is narrow as ~6 GHz, corresponding to a high coherence. To our knowledge, this is the first demonstration of wavelength-tunable mode-locking with watt-level in the 2 μm water absorption band.The high temporal coherent laser can be further applied in spectroscopy, the efficient excitation of molecules, sensing, and quantum optics.展开更多
Due to the manifestation of fascinating physical phenomena and materials science, two-dimensional(2D) materials have recently attracted enormous research interest with respect to the fields of electronics and optoel...Due to the manifestation of fascinating physical phenomena and materials science, two-dimensional(2D) materials have recently attracted enormous research interest with respect to the fields of electronics and optoelectronics.There have been in-depth investigations of the nonlinear properties with respect to saturable absorption, and many 2D materials show potential application in optical switches for passive pulsed lasers. However, the Eigen band-gap determines the responding wavelength band and constrains the applications. In this paper, based on band-gap engineering, some different types of 2D broadband saturable absorbers are reviewed in detail, including molybdenum disulfide(MoS2), vanadium dioxide(VO2), graphene, and the Bi2Se3 topological insulator. The results suggest that the band-gap modification should play important roles in 2D broadband saturable materials and can provide some inspiration for the exploration and design of 2D nanodevices.展开更多
1 Results The development of tuneable solid-state organic dye lasers is a subject of considerable interest and research activity.Compared to conventional liquid dye lasers they have the advantage of being free of solv...1 Results The development of tuneable solid-state organic dye lasers is a subject of considerable interest and research activity.Compared to conventional liquid dye lasers they have the advantage of being free of solvent handling,having small size,and being easy to operate.For high-performance solid-state dye lasers highly photo-stable dyes with low quantum yield of triplet formation and low triplet-triplet absorption cross-section in the lasing wavelength region are required.For solid state dye lasers ...展开更多
By using the ultrasound-assisted liquid phase exfoliation method, Bi_2Te_3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber(SA), in which nonlinear absorption propertie...By using the ultrasound-assisted liquid phase exfoliation method, Bi_2Te_3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber(SA), in which nonlinear absorption properties around 2 μm are analyzed with a home-made mode-locked laser. With the as-prepared Bi_2Te_3 SA employed,a stable passively Q-switched all-solid-state 2 μm laser is successfully realized. Q-switched pulses with a maximum average output power of 2.03 W are generated under an output coupling of 5%, corresponding to the maximum single-pulse energy of 18.4 μJ and peak power of 23 W. The delivered shortest pulse duration and maximum repetition rate are 620 ns and 118 k Hz under an output coupling of 2%, respectively. It is the first presentation of such Bi_2Te_3 SA employed in a solid-state Q-switched crystalline laser at 2 μm, to the best of our knowledge. In comparison with other 2 D materials suitable for pulsed 2 μm lasers, the saturable absorption performance of Bi_2Te_3 SA is proved to be promising in generating high power and high-repetition-rate 2 μm laser pulses.展开更多
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ...Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.展开更多
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ...Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.展开更多
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si...All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.展开更多
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
文摘The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.
文摘A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM unstable-stable hybrid resonator. At an incident pump power of 820 W, a maximum cw output of 240 W at 1064nm is obtained. The optical-to-optical efficiency and Mope efficiency are 40.7% and 53.2%, respectively. The M2 factors in the unstable direction and in the stable direction are 4.38 and 5.44, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60225005 and 10227401, the Knowledge Innovation Programme of Chinese Academy of Sciences, and the National Hi-Tech ICF Committee of China.
文摘We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.
文摘Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be 2.1 kHz within 5μs by using a single mode fiber link.We use the monolithic laser to measure the angular speed of a spinning motor and simulate a linearly frequency modulated continuous-wave ladar system in laboratory.
基金Project supported by the State Key Laboratory of Tribology,Tsinghua University,China (Grant No.SKLT08A05)
文摘A laser diode end-pumped passively mode-locked Nd:YVO4 solid-state laser with a semiconductor saturable ab- sorber mirror (SESAM), in which the intracavity laser beam spot on the SESAM can be adjusted periodically, is investigated. Inserting a rectangular prism (RP) into the laser cavity is a promising approach towards the goal of periodically moving the position of the focus spot of the intracavity pulse on the SESAM surface to avoid the long-time irradiation of the laser beam on the same position, thereby solving a series of problems caused by damage to the SESAM and greatly prolonging its usage life. The adjustment of the rectangular prism in the laser cavity does not break the stable continuous wave (CW) mode-locked condition. The laser generates a stable picosecond pulse sequence at 1064 nm with an output power of 3.6 W and a pulse width of 14 ps. The instabilities of the output power and the pulse width are 1.77% and 4.5%, respectively.
基金Supported by the National Natural Science Foundation of China under Grant No.60078011in part by an Open Project of the National Laboratory of Solid State Microstructure,Nanjing University.
文摘A maximum of 310mW average output power at 355nm has been obtained by extracavity frequency tripling with a BBO crystal in a Q-switched Nd:YV04 laser with 11.2 W of laser diode pump power. The single pass frequency conversion efficiency (infrared-to-ultraviolet) is 14.3%. The power stability of the ultraviolet laser is better than 1% in 30min.
文摘In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as saturable absorber. The rate equations describing the dynamics of laser action are numerically solved simultaneously with the temperature conductivity heat equation to depict the transient temperature distribution. The study has been performed in the cylindrical coordinates to characterize the temperature distribution in the axial and radial directions. The thermal transient time in both directions as well as the thermal focal length are calculated. The temporal behavior of the temperature distribution has been illustrated in a 3-dimensional diagram.
文摘We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled,diode-pumped multi-slab Yb:YAG laser operating at 1 Hz.To the best of our knowledge,this is the highest energy ever recorded for a diodepumped laser system.
基金supported by the National Natural Science Foundation of China (Nos. 12004208, 51302285, 61675217, and 61975221)Natural Science Foundation of Shanghai (No. 19ZR1479300)+3 种基金Key Research Program of Frontier Science of CAS (No. QYZDB-SSW-JSC041)Program of Shanghai Academic Research Leader (No. 17XD1403900)Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB16030700)Key Laboratory of Optoelectronic Information Technology, Ministry of Education (Tianjin University)。
文摘Two-dimensional(2 D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation(LPE) method. The nonlinear optical properties of 2 D Te nanosheets were studied by the open-aperture Z-scan technique. Furthermore, the continuous wave mode-locked Nd:YVO4 laser was successfully realized by using 2 D Te as a saturable absorber(SA) for the first time, to the best of our knowledge. Ultrashort pulses as short as 5.8 ps were obtained at 1064.3 nm with an output power of 851 m W. This primary investigation indicates that the 2 D Te SA is a promising photonic device in the fields of ultrafast solid-state lasers.
基金supported by the Key Research and Development Project in Zhejiang Province(No.2021C01024).
文摘Stable,efficient and high color rendering index all-inorganic color converters are urgently demanded for white laser diodes.Phosphor-in-glass(PiG),possessing the advantages of phosphors excellent quantum efficiency as well as favorable chemical and thermal stability of glass,has attracted widespread attention.There have been only very few reports of Y_(1.31)Ce_(0.09)Gd_(1.6)Al_(5)O_(12)(Ce:GdYAG)PiG for solid-state laser light-ing.Herein,a series of Ce:GdYAG PiG samples are fabricated by a simple solid-state sintering method.Impressively,the supreme internal quantum efficiency of as-prepared PiG is 91%,which is very close to original phosphors(95%).Furthermore,PiG exhibits a high thermal conductivity(1.844 W m^(−1)K^(−1))and a maximum transparency(62%).Remarkably,by changing the concentration of phosphors and the thickness of PiG samples,a luminous efficacy of 163.5 lm/W,high color rendering index of 74.8 and low correlated color temperature of 4806.8 K are achieved under blue laser irradiation.These results indicate that the Ce:GdYAG PiG samples have shown tremendous application foreground as all-inorganic color converter for solid-state laser lighting.
基金supported by the National Natural Science Foundation of China (50902129,51472240,61078076,91122033,and 11304313)the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-EW-H03)the Key Laboratory of Functional Crystal Materials and Device (Shandong University,Ministry of Education)
文摘In this paper,we reported a multiwavelength passively Q-switched Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as a saturable absorber(SA) for the first time,to the best of our knowledge.Bi2Te3 nanosheets were prepared by the facile solvothermal method.The influence of three Bi2Te3 densities on the laser operation was compared.The maximum average output power was up to 57 mW with a pulse energy of 511.7 nJ.The shortest pulsewidth was measured to be 370 ns with 110 kHz pulse repetition rate and 40 mW average power.The laser operated at three wavelengths simultaneously at 1043.7,1045.3,and 1046.2 nm,of which the frequency differences were within the terahertz wave band.Our work suggests that solvothermal synthesized Bi2Te3 is a promising SA for simultaneously multiwavelength laser operation.
基金Natural Science Foundation of Jiangsu Province(BK20160221)Natural Science Foundation of Xuzhou,China(KC16SG247)+1 种基金Doctoral Research Funding of Jiangsu Normal University(15XLR024)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be tuned from 1874 to 1973 nm, with a tunable wavelength range up to ~100 nm and maximum output power up to 1.35 W. The bandwidth is narrow as ~6 GHz, corresponding to a high coherence. To our knowledge, this is the first demonstration of wavelength-tunable mode-locking with watt-level in the 2 μm water absorption band.The high temporal coherent laser can be further applied in spectroscopy, the efficient excitation of molecules, sensing, and quantum optics.
基金supported by the National Natural Science Foundation of China (Nos. 51025210 and 51422205)the China Scholarship Council in 2014 (No. 201406220045)
文摘Due to the manifestation of fascinating physical phenomena and materials science, two-dimensional(2D) materials have recently attracted enormous research interest with respect to the fields of electronics and optoelectronics.There have been in-depth investigations of the nonlinear properties with respect to saturable absorption, and many 2D materials show potential application in optical switches for passive pulsed lasers. However, the Eigen band-gap determines the responding wavelength band and constrains the applications. In this paper, based on band-gap engineering, some different types of 2D broadband saturable absorbers are reviewed in detail, including molybdenum disulfide(MoS2), vanadium dioxide(VO2), graphene, and the Bi2Se3 topological insulator. The results suggest that the band-gap modification should play important roles in 2D broadband saturable materials and can provide some inspiration for the exploration and design of 2D nanodevices.
文摘1 Results The development of tuneable solid-state organic dye lasers is a subject of considerable interest and research activity.Compared to conventional liquid dye lasers they have the advantage of being free of solvent handling,having small size,and being easy to operate.For high-performance solid-state dye lasers highly photo-stable dyes with low quantum yield of triplet formation and low triplet-triplet absorption cross-section in the lasing wavelength region are required.For solid state dye lasers ...
基金National Natural Science Foundation of China(NSFC)(61475088,61775119,61378022,61422511)Young Scholars Program of Shandong University(2015WLJH38)Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology,Electronic Engineering Institute,Hefei,China(SLK2016KF01)
文摘By using the ultrasound-assisted liquid phase exfoliation method, Bi_2Te_3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber(SA), in which nonlinear absorption properties around 2 μm are analyzed with a home-made mode-locked laser. With the as-prepared Bi_2Te_3 SA employed,a stable passively Q-switched all-solid-state 2 μm laser is successfully realized. Q-switched pulses with a maximum average output power of 2.03 W are generated under an output coupling of 5%, corresponding to the maximum single-pulse energy of 18.4 μJ and peak power of 23 W. The delivered shortest pulse duration and maximum repetition rate are 620 ns and 118 k Hz under an output coupling of 2%, respectively. It is the first presentation of such Bi_2Te_3 SA employed in a solid-state Q-switched crystalline laser at 2 μm, to the best of our knowledge. In comparison with other 2 D materials suitable for pulsed 2 μm lasers, the saturable absorption performance of Bi_2Te_3 SA is proved to be promising in generating high power and high-repetition-rate 2 μm laser pulses.
基金the National Natural Science Foundation of China(22178120)the China Postdoctoral Science Foundation(2022TQ0173,2023M731922,2022M720076,BX20220182,2023M731921,2023M731919,2023M741919).
文摘Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
基金funded by the Ministry of Science and ICT through the National Research Foundation of Korea(202300262366)the Basic Research Lab(RS-2023-00219710)the Ministry of Commerce,Industry,and Energy(20025720)of Korea.
文摘Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
基金supported by National Key Research and Development Program of China(No.2021YFF0500600)Key R&D Projects in Henan Province(221111240100)China Postdoctoral Science Foundation(2022TQ0291 and 2022M712869)
文摘All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.