期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Experimental Study on Engineering Behavior of Solidified Soil for Scour Repair and Protection
1
作者 WU Xiao-ni LI Ru-yu +5 位作者 SHU Jian TANG Chao CHEN Jin-jian WANG Hui-li JIANG Hai-li WANG Xiao 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期625-635,共11页
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve... A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference. 展开更多
关键词 scour repair and protection solidified soil PUMPABILITY STRENGTH flow properties anti-scour performance
下载PDF
Mechanical properties of dredged soil reinforced by xanthan gum and fibers
2
作者 Dianzhi Feng Bing Liang +4 位作者 Xingxing He Fu Yi Jianfei Xue Yong Wan Qiang Xue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2147-2157,共11页
Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil... Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application. 展开更多
关键词 solidified dredged soil(SDS) Xanthan gum(XG) Jute fiber(JF) Mechanical properties
下载PDF
A New Mode of Coal Mining Under Buildings with Paste-Like Backfill Technology 被引量:2
3
作者 崔建强 孙恒虎 黄玉诚 《Journal of China University of Mining and Technology》 2002年第2期143-147,共5页
The formation of the paste like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining under buildings with the technology was proposed. And its specif... The formation of the paste like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining under buildings with the technology was proposed. And its specificity was analyzed, and a further introduction to the full sand soil solidifying material was given. The main parts of the backfill system, such as the backfill preparation system, the pipeline transportation system, the backfill systems in fully mechanized mining faces and the backfill process, were presented emphatically. 展开更多
关键词 mining under buildings paste like backfill full sand soil solidifying material
下载PDF
Situation and Prevention of Loess Water Erosion Problem along the West-to-East Gas Pipeline in China 被引量:1
4
作者 王菁莪 项伟 左勖 《Journal of Earth Science》 SCIE CAS CSCD 2010年第6期968-973,共6页
Loess water erosion constitutes a great threat to the safety of the West-to-East Gas Pipeline in China. Through aerial-photo interpretation and investigation of the typical region (Zichang (子长)-Yongping (水坪) ... Loess water erosion constitutes a great threat to the safety of the West-to-East Gas Pipeline in China. Through aerial-photo interpretation and investigation of the typical region (Zichang (子长)-Yongping (水坪) Section) where the loess water erosion problem is intensely developed, the influence of water erosion on the pipeline in the loess area can be manifested as the following 3 aspects: (1) surface and gully erosion causes the base overhead and pipeline exposure; (2) underground erosion forms caves, which may cause surface subsidence and foundation failure; (3) water erosion of loess may destroy the balance of slopes and cause geological hazards like landslide, collapse and debris flow. Presently, the controlling methods are mainly concrete or grouted rubble protection. These methods are not only high in cost but also have poor effect and poor durability. This article suggests a method of controlling the loess water erosion problem with soil solidified material. Then, related tests are conducted. The results of uniaxial compression, permeability, and anti-erosion ability tests indicate that the mechanical properties and anti-erosion ability of solidified loess were improved significantly. 展开更多
关键词 West-to-East Gas Pipeline loess water erosion soil solidified material.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部