Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiet...Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.展开更多
Abnormal SEP reflects dysfunction of the medial lemniscus and posterior cervical cord. These structures are likely to be affected in Chiari malformation. Therefore, SEP abnormalities may provide valuable information i...Abnormal SEP reflects dysfunction of the medial lemniscus and posterior cervical cord. These structures are likely to be affected in Chiari malformation. Therefore, SEP abnormalities may provide valuable information in patients with CM. However, the consistency of SEP abnormality or normality with the damage is a matter of research. Knowing whether median nerve somatosensory evoked potential (SEP) is useful in revealing subclinical damage in patients with Chiari malformation is important in the treatment and follow-up plan of the disease. The aim of this study was to investigate the relationship between median nerve SEP values and the severity of cerebellar ectopia in patients with Chiari type 1 malformation. Median nerve SEP values were obtained from 30 healthy individuals and 146 individuals with Chiari malformation. The cerebellar ectopia degree and McRae line length were measured. SEP values were not significantly different between groups. The McRae line was found to be significantly shorter in the control group than in the Chiari malformation group (p = 0.031). There was no correlation between the degree of cerebellar ectopia and the length of the McRae line (r = 0.002, p = 0.979). Neither cerebellar ectopy degree nor McRae line length had a relationship with SEP values (r = -0.153, p = 0.066;r = -0.056, p = 0.500, respectively). There was no difference in cerebellar ectopy degree or SEP values between the groups with cerebellar ectopy with and without a syrinx (p = 0.899;p = 0.080, respectively). Likewise, McRae line length was not found to be related to the presence of a syrinx (p = 0.139). Median nerve SEP examination was not beneficial for diagnosing asymptomatic-oligosymptomatic Chiari malformation as a subclinical injury, whether accompanied by syringomyelia or not.展开更多
The author introduces a new hypnotherapeutic technique termed “Mental Access/Somatosensory Access” (MASSA). MASSA is designed to utilize an external somatosensory stimulus in the context of hypnotherapy, based on a ...The author introduces a new hypnotherapeutic technique termed “Mental Access/Somatosensory Access” (MASSA). MASSA is designed to utilize an external somatosensory stimulus in the context of hypnotherapy, based on a Bottom-Up/Top-Down Paradigm, which complements and mutually reinforces hypnotic inductions by using imbedded suggestions. The intervention’s algorithm includes a combination of real-time stimulation through one of the following somatosensory modalities: sensorimotor activation of the palms, visual, auditory, vibration, thermal, olfaction or oropharyngeal. These modalities are accompanied by guided hypnotic dissociation and suggestions. Somatosensory stimulation amplifies patients’ engagement in the procedure, focusing their attention on a stimulus and on the hypnotic experience during the intervention. A stream of closed questions with imbedded suggestions, presented by the therapist, is designed using suggestive presuppositions, termed by the author “The Create and Verify Principle” (CVP). This principle facilitates effective pacing and helps transform patients’ sensory and mental experiences. Imbedded suggestions followed by real-time stimulation, maintain a focus on the somatosensory content, boost the hypnotic experience, and gradually combine awareness of the somatosensory stimulation experience (Bottom-Up regulation) with memory, imagination, emotions and meanings, for mental access of resources and adaptive coping (Top-Down regulation). In the first part of this article, the author briefly introduces the neurophysiological mechanism behind the suggestive, somatosensory, attention-management intervention and provides an example of a basic algorithm of the MASSA technique. The second part includes clinical samples with scripts of successfully treated patients, who experienced tension headache, psychogenic balance disorder, tinnitus. .展开更多
The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal...The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal cord injuries in a rat model.We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials.Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis.The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion.After distraction injury,extracellular spaces were slightly but not significantly enlarged;somatosensory evoked potential res ponses slightly decreased and motor evoked potential responses were lost.Correlation analysis showed that histological and electrophysiological findings we re significantly correlated and related to injury type.Intraope rative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.展开更多
Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions.However,few studies have reported on the effects of visuo-tactile multisensory integratio...Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions.However,few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions.The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI.Ten right-handed healthy subjects were recruited for this study.Two tasks(tactile stimulation and visuotactile stimulation)were performed using a block paradigm during f MRI scanning.In the tactile stimulation task,in subjects with eyes closed,tactile stimulation was applied on the dorsum of the right hand,corresponding to the proximal to distal directions,using a rubber brush.In the visuotactile stimulation task,tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush.In the result of SPM group analysis,we found brain activation on the somatosensory cortical area.Tactile stimulation task induced brain activations in the left primary sensory-motor cortex(SM1)and secondary somatosensory cortex(S2).In the visuo-tactile stimulation task,brain activations were observed in the both SM1,both S2,and right posterior parietal cortex.In all tasks,the peak activation was detected in the contralateral SM1.We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.展开更多
Hegu (LI 4) is one of the most frequently used and most important analgesic points in Chinese acupuncture. It is particularly effective for treating disorders of the head and face. According to the meridian theory in ...Hegu (LI 4) is one of the most frequently used and most important analgesic points in Chinese acupuncture. It is particularly effective for treating disorders of the head and face. According to the meridian theory in Traditional Chinese Medicine (TCM), the Large Intestine Meridian to which it belongs originates in the hand and terminates in the face. This theory is based, however, more on thousands of years of clinical experience rather than on scientific evidence. In our study of acupuncture effects on normal human volunteers with the non-invasive BOLD (blood oxygenation level dependant)technique for FMRI (functional magnetic resonance imaging), we demonstrated widespread effects in the brain during acupuncture at Hegu and Zusanli (ST 36). A finding of special interest was observed in the primary somatosensory cortes (SI) during Hegu acupuncture. In additlon to activation of the area representing the hand in response to the sensory impulses arising from the site of stimulation, activation also occurred in the face representation in all 3 subjects brains studied by coronal brain sections. In one of these subjects activation in the face representation was even stronger than that in the hand representation. Areas representing the neck, trunk and other parts of the upper extremity also exhibited increase in signal intensity, subject to individual variability. As compared with Hegu, such effects were either absent or much weaker with acupuncture at Zusanli (ST 36) or with other forms of sensory stimulation to the hand. Functional mapping of the brain with MRI has provided the first direct evidence in support of the important role of Hegu acupuncture in TCM.展开更多
It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-...It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in- creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potentia~ ~atency can reflect the degree of spinat cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury.展开更多
Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act indepen...Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act independently and synergistically under acupuncture stimulation.To investigate this,we used two-photon in vivo calcium reco rding to observe the effects of acupuncture stimulation at ST36(Zusanli)in mice.Acupuncture stimulation in peripheral acupoints potentiated calcium signals of pyramidal neurons and astrocytes in the somatosensory cortex and resulted in late-onset calcium transients in astrocytes.Chemogenetic inhibition of neurons augmented the astrocytic activity.These findings suggest that acupuncture activates neuronal and astrocytic activity in the somatosensory co rtex and provide evidence for the involvement of both neurons and astrocytes in acupuncture treatment.展开更多
A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University...A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I-III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.展开更多
Low-level laser therapy(LLLT) may have an effect on the pain associated with orthodontic treatment. The aim of this study was to evaluate the effect of LLLT on pain and somatosensory sensitization induced by orthodont...Low-level laser therapy(LLLT) may have an effect on the pain associated with orthodontic treatment. The aim of this study was to evaluate the effect of LLLT on pain and somatosensory sensitization induced by orthodontic treatment. Forty individuals(12–33 years old; mean ± standard deviations: 20.8 ± 5.9 years) scheduled to receive orthodontic treatment were randomly divided into a laser group(LG) or a placebo group(PG)(1:1). The LG received LLLT(810-nm gallium-aluminium-arsenic diode laser in continuous mode with the power set at 400 mW, 2 J·cm–2) at 0 h, 2 h, 24 h, 4 d, and 7 d after treatment, and the PG received inactive treatment at the same time points. In both groups, the non-treated side served as a control. A numerical rating scale(NRS) of pain, pressure pain thresholds(PPTs), cold detection thresholds(CDTs), warmth detection thresholds(WDTs), cold pain thresholds(CPTs), and heat pain thresholds(HPTs) were tested on both sides at the gingiva and canine tooth and on the hand. The data were analysed by a repeated measures analysis of variance(ANOVA). The NRS pain scores were significantly lower in the LG group(P = 0.01). The CDTs,CPTs, WDTs, HPTs, and PPTs at the gingiva and the PPTs at the canine tooth were significantly less sensitive on the treatment side of the LG compared with that of the PG(P < 0.033). The parameters tested also showed significantly less sensitivity on the nontreatment side of the LG compared to that of the PG(P < 0.043). There were no differences between the groups for any quantitative sensory testing(QST) measures of the hand. The application of LLLT appears to reduce the pain and sensitivity of the tooth and gingiva associated with orthodontic treatment and may have contralateral effects within the trigeminal system but no generalized QST effects. Thus, the present study indicated a significant analgesia effect of LLLT application during orthodontic treatment.Further clinical applications are suggested.展开更多
Diffusion tensor tractography allows the sensory fiber course of the medial lemniscus to be visualized. But diffusion tensor tractography for accurate evaluation of the repair of injured somatosensory tracts in stroke...Diffusion tensor tractography allows the sensory fiber course of the medial lemniscus to be visualized. But diffusion tensor tractography for accurate evaluation of the repair of injured somatosensory tracts in stroke patients has been rarely reported. A 55-year-old female patient presented with severe somatosensory dysfunction of the left side caused by a spontaneous intracerebral hemorrhage on the right side. The somatosensory function of the affected side recovered to a nearly normal state at 7 weeks from onset. Functional magnetic resonance imaging revealed that at 3 weeks from onset, there was no cortical activation by touch at each hand; at 7 weeks, the contralateral cortex centered on the primary sensory cortex was found to be activated during touch and passive movements, and activation by passive movements was increased compared with that at 3 weeks. Diffusion tensor tractography revealed that a medial lemniscus on the affected (right) hemisphere was not observed at 3 weeks from onset, however, at 7 weeks, the unaffected (left) hemisphere passed along the medial lemniscus pathway from the pons to the primary sensory cortex. These findings indicate that combined functional magnetic resonance imaging and diffusion tensor tractography would allow more accurate evaluation of the architecture and integrity of somatosensory tracts and is a useful method to investigate the recovery of somatosensory dysfunction in stroke patients.展开更多
The somatosensory system plays a crucial role in executing precise movements by providing sensory feedback (Farrer et al., 2003; Rabin and Gordon, 2004). Somatosensory dys- function is a common problem following str...The somatosensory system plays a crucial role in executing precise movements by providing sensory feedback (Farrer et al., 2003; Rabin and Gordon, 2004). Somatosensory dys- function is a common problem following stroke. In partic- ular, somatosensory impairments, such as impairment in touch, proprioception, light touch, and vibration have been frequently observed (Carey et al., 1993; Sullivan and Hed- man, 2008; Tyson et al., 2008). Patients with somatosensory dysfunction show negative effects on motor control, and it sometimes becomes difficult to perform daily activities independently.展开更多
Objective: Optimization of combining electroencephalography (EEG), short latency somatosensory evoked potentials (SLSEP) and transcranial Doppler (TCD) techniques to diagnose brain death. Methods: One hundred and elev...Objective: Optimization of combining electroencephalography (EEG), short latency somatosensory evoked potentials (SLSEP) and transcranial Doppler (TCD) techniques to diagnose brain death. Methods: One hundred and eleven patients (69 males, 42 females) from the major hospitals of Zhejiang Province were examined with portable EEG, SLSEP and TCD devices. Re-examinations occurred ≤12 h later. Results: The first examination revealed that the combination of SLSEP and EEG led to more sensitive diagnoses than the combination of SLSEP and TCD. Re-examination confirmed this and also revealed that the combination of TCD and EEG was the most sensitive. Conclusion: The results show that using multiple techniques to diagnose brain death is superior to using single method, and that the combination of SLSEP and EEG is better than other combinations.展开更多
Aim: The effect of a renewed SS-cream (RSSC) on the treatment of premature ejaculation (PE) was evaluated and compared with the original SS-cream (OSSC). Methods: Sixty male white New Zealand rabbits, weighing 2.5kg-3...Aim: The effect of a renewed SS-cream (RSSC) on the treatment of premature ejaculation (PE) was evaluated and compared with the original SS-cream (OSSC). Methods: Sixty male white New Zealand rabbits, weighing 2.5kg-3.0 kg, were divided at random into 3 groups: the RSSC, OSSC and placebo groups. The spinal somatosensory evoked potential (SSEP) elicited by electric stimulation of the glans penis with disk electrode was investigated with an electrophysiograph (Poseidomn, Shanghai, China) before and 10, 30 and 60 min after drug or placebo application on the glans. The Onset and the N1 latencies and the amplitude of SSEP were recorded and analyzed. Results: There was no significant difference (P>0.05) in the mean Onset and Nl latency of SSEP among the 3 groups before drug application. Compared with the pre-application value, the mean Onset and Nl latencies in the RSSC and OSSC groups were significantly prolonged at 10, 30 and 60 min after treatment (P<0.05), while they were not significantly changed (P>0.05) in the placebo group. The mean Onset latency of RSSC at 10 and 30 min and that of OSSC at 30 min were significantly delayed (P<0.05) compared with the placebo group. The mean Nl latency of RSSC at 30 and 60 min and that of OSSC group at 30 min were also significantly delayed (P<0.05). Conclusion: RSSC delays the latencies of SSEP, suggesting a local desensitizing effect on the sensory receptor of the glans penis dorsal nerve, which provides the potential for PE treatment. The desensitizing effect of RSSC is higher than that of OSSC.展开更多
BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological cha...BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological changes cannot reflect functional alterations in a compressed nerve root. Dermatomal somatosensory evoked potential (DSEP) provides a means to assess the functional state of a nerve root. OBJECTIVE: To evaluate the clinical significance of DSEP, assessing the degree of nerve root injury following lumbar spinal stenosis. DESIGN, TIME AND SETTING: A case-control study was performed in the Department of Orthopaedic Surgery, Hainan People's Hospital, China, between September 2004 and December 2007. PARTICIPANTS: Forty-seven patients diagnosed with lumbar spinal stenosis by CT or MRI were selected as the case group; fifty healthy subjects were collected as the control group. METHODS: A KEYPOINT myoelectric evoked potential apparatus (DANTEC Company, Denmark) was used to measure DSEP, and stimulative spots were determined in accordance with the skin key sensory spot standards established by The American Spinal Injury Association: L4 in the medial malleolus, L5 in the third metatarsophalangeal joint of the dorsum of foot and S1 in the lateral heel. The needle electrode used as the recording electrode was located at the Cz point of the cranium, and the reference electrode at the Fz point. MAIN OUTCOME MEASURES: Latency of the P40 peak of DSEP, P1-N1 amplitude, P40 waveform and differentiation and disappearance of various waves. RESULTS: The sensitivity and diagnostic concurrence with surgery of nerve root injury following lumbar spinal stenosis evaluated by DSEP was 95.7 %. P40 latencies at L4, L5 and S1 in the case group were significantly longer than in the control group (P 〈 0.05), and the P1-N1 amplitude in the case group was significantly lower than the control group (P 〈 0.05-0.01). Nerve root injury was categorized according to DSEP latency as follows: severe damage (disappearance of the P40 wave in 103 dermatomes), moderate damage (prolongation of the P40 peak latency ≥ 3.0 times the standard deviation of the normal mean in 60 dermatomes) and mild damage (prolongation of the P40 peak latency ≥ 2.5 times the standard deviation of the normal mean in 31 dermatomes). CONCLUSION: DSEP can be used to determine the severity of nerve root injury following lumbar spinal stenosis with high sensitivity and specificity.展开更多
BACKGROUND: It has been reported that dermatomal somatosensory evoked potential (DSEP) can be used for diagnosing nerve root injury in patients with lumbar disc herniation (LDH), and that 83% 95% of patients suff...BACKGROUND: It has been reported that dermatomal somatosensory evoked potential (DSEP) can be used for diagnosing nerve root injury in patients with lumbar disc herniation (LDH), and that 83% 95% of patients suffer from the disease. Body height correction is not performed prior to determinations of latency and latency difference between the healthy and affected sides. However, latency noticeably correlates to body height. OBJECTIVE: This study aims to determine the lumbosacral nerve root injury in patients with LDH by DSEP, and to evaluate the sensitivity of the DSEP difference between the healthy and affected sides using a diagnostic index following body height correction. DESIGN: A case-control observation. SETTING: Department of Orthopedic Surgery, Hainan Provincial People's Hospital. PARTICIPANTS: Ninety-six patients, comprised of 67 males and 29 females, with an average age of 43 years and a mean body height of 1.65 m (range 1.48-1.81 m), were recruited for this study. These patients suffered from unilateral lower limb radiation pain and received treatment at the Department of Orthopedic Surgery, Hainan Provincial People's Hospital between January 2004 and December 2006. All patients were confirmed to suffer from LDH at the L3-4, L-5, and/or Ls-SI by CT and/or MRI examinations. Central nervous system diseases were excluded. In order to obtain a normal reference value, DSEP was determined for a group of 50 subjects, who concurrently received health examinations in the same department. The subjects had no previous history of back leg pain or nervous system disease. The group of healthy controls included 26 males and 24 females, with an average age of 37 years and a mean body height of 1.63 m (range 1.50-1.80 m). Written informed consent was obtained from all subjects for laboratory samples. The protocol was approved by the Hospital's Ethics Committees. DSEP was determined with myoelectricity-evoked potential equipment (Keypoint, Batch No. 9020A0042591, Dantec Company, Denmark). METHODS: DSEP of patients with LDH was determined. Constant-voltage square pulse stimulation was used to determine DSEP, with the following parameters: a pulse wave width of 0.2 milliseconds; a saddle-like stimulating electrode; a stimulation intensity 3 times greater than the sensation threshold; a stimulation frequency of 1.5 Hz; mean superposition greater than 100 times; and inter-electrode impedance 〈 5 k Q. The stimulation point was a skin key sensation point confirmed by the American Spinal Injury Association, i.e. L4 at medial malleolus, L5 at the third metatarsophalangeal joint on the dorsum of the foot, and SI at the lateral heel. The recording electrode was a needle electrode, the recording point was Cz, and the reference electrode was Fz. DSEP latency of P40, and latency differences of P40, between the healthy side and the affected side, were determined. DSEP at L4, L5, and S1 nerve roots of the lower limbs of 50 healthy controls were bilaterally determined. The normal values of P40 latency and P40 N50 amplitude were statistically obtained. MAIN OUTCOME MEASURES: Determination of DSEP values. RESULTS: Ninety-six patients with LDH and fifty healthy controls participated in the final analysis. In the healthy controls, the amplitude of DSEP varied greatly, with a mean amplitude co-efficient of variation of 58% for L4, L5, and SI dermatomes. P40 latency was stable, with a mean latency coefficient of variation of 4.7%. In patients with LDH, the P40 wave disappeared. P40 latency was 2.5 times prolonged compared to normal mean value. P40 latency difference between the healthy and the affected side was 2.5 times higher than the normal mean value of the healthy side. CONCLUSION: DSEP can reflect the functional status of lumbosacral nerve root. P40 latency difference between the healthy side and the affected side is the most sensitive diagnosis index for patients with LDH suffering from unilateral lower limb radiation pain.展开更多
Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. ...Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. Methods: Form January, 2019 to December, 2019, 80 cerebrovascular disease patients were recruited, and had been divided into control group (n = 40) and observation group (n = 40), randomly. The control groups received conventional rehabilitation treatment, for 40 minutes per day, while observation group received conventional rehabilitation treatment, for 20 minutes per day, and virtual reality technology treatment, 20 minutes per day, 5 days a week for 4 weeks. Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel index (MBI) were used to assess the motor function of the upper limbs and ADL before and after treatment. Results: Before treatment, the scores of WMFT, FMA-UE and MBI were no significant difference between two groups (P > 0.05). The scores improved in both groups after treatment (P < 0.01), and were higher in the observation group than in the control group (P < 0.05). Conclusion: The somatosensory interaction technology combined with virtual reality technology could facilitate to improve the upper limbs function and ADL in cerebrovascular disease patients.展开更多
The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to ...The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.展开更多
BACKGROUND: Studies have shown that latency changes of some elements in a somatosensory evoked potential (SEP) and motor evoked potential (MEP) can reflect electrical activity of cerebral cortical neurons and con...BACKGROUND: Studies have shown that latency changes of some elements in a somatosensory evoked potential (SEP) and motor evoked potential (MEP) can reflect electrical activity of cerebral cortical neurons and conduction of white matter nerve fibers. However, there is a paucity of information regarding the dynamic observation of SEP and MEP following cerebral ischemic injury. OBJECTIVE: To explore SEP and MEP changes following acute ischemic stroke, and investigate the role of evoked potentials in monitoring brain function in stroke. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University from September 2007 to August 2008. MATERIALS" Hydrogen blood flow detector was purchased from Soochow University Medical Instrument Co., China, and Power lab system was purchased from AD Instruments, Inc., USA. METHODS A total of 36 healthy, adult, male, Sprague Dawley rats were randomly assigned to four groups (n = 9), including three ischemia groups (12, 24 and 72 hours of ischemia) and a sham-surgery group. The rat model of acute ischemic stroke was established by middle cerebral artery occlusion (MCAO) in the left hemisphere. MAIN OUTCOME MEASURES" SEP and MEP of the left limbs were detected, and cerebral blood flow was measured by the hydrogen cleaning method. RESULTS: The latency of positive wave 1 (P1), negative wave 1 (N1) and positive wave 2 (P2) waves in SEP, and latency of negative wave 1,2 (N1, N2) waves in MEP were significantly prolonged with increasing ischemic duration following MCAO (P 〈 0.01), but cerebral blood flow was significantly decreased (P 〈 0.05, or P 〈 0.01). CONLUSION: Ischemic stroke prolongs the latency of SEP waves (P1, N1, P2) and MEP waves (N1, N2), and cerebral cortical evoked potential may correlate with cerebral blood flow changes. This indicates that SEP and MEP can be used to evaluate brain function following acute ischemic stroke.展开更多
BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. H...BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. However, the effects of ligustrazine on SEP is still not clear. OBJECTIVE : To study the protective effects of ligustrazini injection on cerebral ischemia-reperfusion injury.DESIGN: Auto-control study, random grouping.SETTING: Qilu Hospital of Shandong University.MATERIALS: The experiment was completed in the Cerebral Functional Room of Qilu Hospital Affiliated to Shandong University from March 2002 to June 2004. A totally of 24 healthy Harbin rabbits were randomly divided into blank control group (n=8), model control group (n=8) and ligustrazine treatment group (n=8). Hydrochloric ligustrazine injection, 40 mg/2 mL each ampoule, was provided by the Third Pharmaceutical Factory of Beijing (certification: 93035236273). The main component was hydrochloric ligustrazine and the chemical name was 2, 3, 5, 6-tetramethyl pyrazine hydrochloride. METHODS:① Modeling method: The bilateral common carotid artery ligation was adopted to make the model. ② Index of cerebral functional lesion evaluated with SEP during ischemia-reperfusion: DISA 2000C neuromyoeletrometer provided by Dantec Electronics Ltd, Denmark was used to detect SEP. ③ Interventional process: Blank control group: The latencies and amplitudes of SEP were measured before injection with 1.5 mg/kg ligustrazine and at the points of 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after injection. Ligustrazine treatment group: Rabbits were injected with 1.5 mg/kg ligustrazine, and those of model control group were injected the same volume of saline. Thirty minutes later, the bilateral common carotid artery of the rabbits all had been ligated for 30 minutes, and then reperfused for 120 minutes. The latencies and amplitudes of SEP were measured before injection, before ligation, at the points of 1 minute, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes after ligation, and at the points of 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after reperfusion.④ Evaluating criteria: Normal values of P-wave latencies and amplitudes were (19.34±3.18) ms and (4.55±1.43)μV. Average value before injection in blank control group and average values before injection, after injection and before ligation in ischemiareperfusion group were regarded as control criteria to evaluate changes of P-wave latencies and amplitudes after experiment. MAIN OUTCOME MEASURES: P-wave latencies and amplitudes of SEP in the three groups.RESULTS : A total of 24 rabbits were involved in the final analysis without any loss.① Blank control group: The P-wave latencies delayed markedly at each time point after injection. Compared with that before injection, there was a significant difference (P 〈 0.05-0.01). The P-wave amplitudes did not fluctuate noticeably all the time after injection, but significantly decreased when compared with those before injection (P 〈 0.05-0.01). ② Ischemia-reperfusion group: The P-wave latencies delayed and amplitudes decreased in the rabbits with cerebral ischemia-reperfusion at all points of time during cerebral ischemia-reperfusion, and there was significant difference when compared with the levels before ischemia (P 〈 0.05). When ligustrazine was injected, the latencies and amplitudes changed less, and as compared with the levels before ischemia, the difference was not significant (P〉 0.05).CONCLUSION:① Ligustrazine can inhibit P-wave latencies and amplitudes of SEP of normal rabbits.②Ligustrazine can improve P-wave latencies and amplitudes of SEP of rabbits with cerebral ischemia-reperfusion injury.展开更多
基金supported by the National Natural Science Foundation of ChinaNos.32170950(to LY),31970915(to LY),31871170(to CL)+4 种基金the Natural Science Foundation of Guangdong Province for Major Cultivation ProjectNo.2018B030336001(to LY)the Natural Science Foundation of Guangdong Province,Nos.2021A1515010804(to CL),2023A1515010899(to CL)the Guangdong Grant‘Key Technologies for Treatment of Brain Disorders’No.2018B030332001(to CL)。
文摘Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
文摘Abnormal SEP reflects dysfunction of the medial lemniscus and posterior cervical cord. These structures are likely to be affected in Chiari malformation. Therefore, SEP abnormalities may provide valuable information in patients with CM. However, the consistency of SEP abnormality or normality with the damage is a matter of research. Knowing whether median nerve somatosensory evoked potential (SEP) is useful in revealing subclinical damage in patients with Chiari malformation is important in the treatment and follow-up plan of the disease. The aim of this study was to investigate the relationship between median nerve SEP values and the severity of cerebellar ectopia in patients with Chiari type 1 malformation. Median nerve SEP values were obtained from 30 healthy individuals and 146 individuals with Chiari malformation. The cerebellar ectopia degree and McRae line length were measured. SEP values were not significantly different between groups. The McRae line was found to be significantly shorter in the control group than in the Chiari malformation group (p = 0.031). There was no correlation between the degree of cerebellar ectopia and the length of the McRae line (r = 0.002, p = 0.979). Neither cerebellar ectopy degree nor McRae line length had a relationship with SEP values (r = -0.153, p = 0.066;r = -0.056, p = 0.500, respectively). There was no difference in cerebellar ectopy degree or SEP values between the groups with cerebellar ectopy with and without a syrinx (p = 0.899;p = 0.080, respectively). Likewise, McRae line length was not found to be related to the presence of a syrinx (p = 0.139). Median nerve SEP examination was not beneficial for diagnosing asymptomatic-oligosymptomatic Chiari malformation as a subclinical injury, whether accompanied by syringomyelia or not.
文摘The author introduces a new hypnotherapeutic technique termed “Mental Access/Somatosensory Access” (MASSA). MASSA is designed to utilize an external somatosensory stimulus in the context of hypnotherapy, based on a Bottom-Up/Top-Down Paradigm, which complements and mutually reinforces hypnotic inductions by using imbedded suggestions. The intervention’s algorithm includes a combination of real-time stimulation through one of the following somatosensory modalities: sensorimotor activation of the palms, visual, auditory, vibration, thermal, olfaction or oropharyngeal. These modalities are accompanied by guided hypnotic dissociation and suggestions. Somatosensory stimulation amplifies patients’ engagement in the procedure, focusing their attention on a stimulus and on the hypnotic experience during the intervention. A stream of closed questions with imbedded suggestions, presented by the therapist, is designed using suggestive presuppositions, termed by the author “The Create and Verify Principle” (CVP). This principle facilitates effective pacing and helps transform patients’ sensory and mental experiences. Imbedded suggestions followed by real-time stimulation, maintain a focus on the somatosensory content, boost the hypnotic experience, and gradually combine awareness of the somatosensory stimulation experience (Bottom-Up regulation) with memory, imagination, emotions and meanings, for mental access of resources and adaptive coping (Top-Down regulation). In the first part of this article, the author briefly introduces the neurophysiological mechanism behind the suggestive, somatosensory, attention-management intervention and provides an example of a basic algorithm of the MASSA technique. The second part includes clinical samples with scripts of successfully treated patients, who experienced tension headache, psychogenic balance disorder, tinnitus. .
基金supported by the National Natural Science Foundation of China,No.81871768(to YH)Natural Science Foundation of Tianjin,China,No.18JCYBJC29600(to HYC)High Level-Hospital Program,Health Commission of Guangdong Province,China,No.HKUSZH201902011(to YH)。
文摘The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal cord injuries in a rat model.We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials.Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis.The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion.After distraction injury,extracellular spaces were slightly but not significantly enlarged;somatosensory evoked potential res ponses slightly decreased and motor evoked potential responses were lost.Correlation analysis showed that histological and electrophysiological findings we re significantly correlated and related to injury type.Intraope rative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIP)(NRF-2015R1A5A7037508)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2017R1D1A1B03033985)
文摘Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions.However,few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions.The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI.Ten right-handed healthy subjects were recruited for this study.Two tasks(tactile stimulation and visuotactile stimulation)were performed using a block paradigm during f MRI scanning.In the tactile stimulation task,in subjects with eyes closed,tactile stimulation was applied on the dorsum of the right hand,corresponding to the proximal to distal directions,using a rubber brush.In the visuotactile stimulation task,tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush.In the result of SPM group analysis,we found brain activation on the somatosensory cortical area.Tactile stimulation task induced brain activations in the left primary sensory-motor cortex(SM1)and secondary somatosensory cortex(S2).In the visuo-tactile stimulation task,brain activations were observed in the both SM1,both S2,and right posterior parietal cortex.In all tasks,the peak activation was detected in the contralateral SM1.We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.
文摘Hegu (LI 4) is one of the most frequently used and most important analgesic points in Chinese acupuncture. It is particularly effective for treating disorders of the head and face. According to the meridian theory in Traditional Chinese Medicine (TCM), the Large Intestine Meridian to which it belongs originates in the hand and terminates in the face. This theory is based, however, more on thousands of years of clinical experience rather than on scientific evidence. In our study of acupuncture effects on normal human volunteers with the non-invasive BOLD (blood oxygenation level dependant)technique for FMRI (functional magnetic resonance imaging), we demonstrated widespread effects in the brain during acupuncture at Hegu and Zusanli (ST 36). A finding of special interest was observed in the primary somatosensory cortes (SI) during Hegu acupuncture. In additlon to activation of the area representing the hand in response to the sensory impulses arising from the site of stimulation, activation also occurred in the face representation in all 3 subjects brains studied by coronal brain sections. In one of these subjects activation in the face representation was even stronger than that in the hand representation. Areas representing the neck, trunk and other parts of the upper extremity also exhibited increase in signal intensity, subject to individual variability. As compared with Hegu, such effects were either absent or much weaker with acupuncture at Zusanli (ST 36) or with other forms of sensory stimulation to the hand. Functional mapping of the brain with MRI has provided the first direct evidence in support of the important role of Hegu acupuncture in TCM.
基金supported by the National Natural Science Foundation of China,No.81101370,81101399,81272018the Natural Science Foundation of Jiangsu Province in China,No.BK2011303+2 种基金Jiangsu Province Science and Technology Support Program(Social Development)in China,No.BE2011672University Natural Science Research Foundation of Jiangsu Province for Higher Education,No.12KJB320008College Graduate Research and Innovation Plan of Jiangsu Province in China,No.CXZZ11_0126
文摘It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in- creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potentia~ ~atency can reflect the degree of spinat cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury.
基金National Key Research and Development Program of China,No.2016YFC1306702(to KFS and LZ)the National Natural Science Foundation of China,No.81771455(to KFS)+1 种基金Science and Technology Program of Guangdong Province of China,No.2018B030334001(to KFS)the Natural Science Foundation of Guangdong of China,No.2019A1515011772(to LZ)。
文摘Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act independently and synergistically under acupuncture stimulation.To investigate this,we used two-photon in vivo calcium reco rding to observe the effects of acupuncture stimulation at ST36(Zusanli)in mice.Acupuncture stimulation in peripheral acupoints potentiated calcium signals of pyramidal neurons and astrocytes in the somatosensory cortex and resulted in late-onset calcium transients in astrocytes.Chemogenetic inhibition of neurons augmented the astrocytic activity.These findings suggest that acupuncture activates neuronal and astrocytic activity in the somatosensory co rtex and provide evidence for the involvement of both neurons and astrocytes in acupuncture treatment.
基金funded by Zhejiang Medicines &Health Sciences Research Fund (Class A) in 2009, No.2009A086
文摘A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I-III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institution(Grant No.2014-37)the Jiangsu Provincial Health and Family Planning Commission(No.H201535)Orofacial Pain and TMD Research Unit,Institute of Stomatology,Affiliated Hospital of Stomatology,Nanjing Medical University,for their support
文摘Low-level laser therapy(LLLT) may have an effect on the pain associated with orthodontic treatment. The aim of this study was to evaluate the effect of LLLT on pain and somatosensory sensitization induced by orthodontic treatment. Forty individuals(12–33 years old; mean ± standard deviations: 20.8 ± 5.9 years) scheduled to receive orthodontic treatment were randomly divided into a laser group(LG) or a placebo group(PG)(1:1). The LG received LLLT(810-nm gallium-aluminium-arsenic diode laser in continuous mode with the power set at 400 mW, 2 J·cm–2) at 0 h, 2 h, 24 h, 4 d, and 7 d after treatment, and the PG received inactive treatment at the same time points. In both groups, the non-treated side served as a control. A numerical rating scale(NRS) of pain, pressure pain thresholds(PPTs), cold detection thresholds(CDTs), warmth detection thresholds(WDTs), cold pain thresholds(CPTs), and heat pain thresholds(HPTs) were tested on both sides at the gingiva and canine tooth and on the hand. The data were analysed by a repeated measures analysis of variance(ANOVA). The NRS pain scores were significantly lower in the LG group(P = 0.01). The CDTs,CPTs, WDTs, HPTs, and PPTs at the gingiva and the PPTs at the canine tooth were significantly less sensitive on the treatment side of the LG compared with that of the PG(P < 0.033). The parameters tested also showed significantly less sensitivity on the nontreatment side of the LG compared to that of the PG(P < 0.043). There were no differences between the groups for any quantitative sensory testing(QST) measures of the hand. The application of LLLT appears to reduce the pain and sensitivity of the tooth and gingiva associated with orthodontic treatment and may have contralateral effects within the trigeminal system but no generalized QST effects. Thus, the present study indicated a significant analgesia effect of LLLT application during orthodontic treatment.Further clinical applications are suggested.
基金the National Research Foundation of Korea Grant Funded by the Korean Government,No.KRF-2008-314-E00173
文摘Diffusion tensor tractography allows the sensory fiber course of the medial lemniscus to be visualized. But diffusion tensor tractography for accurate evaluation of the repair of injured somatosensory tracts in stroke patients has been rarely reported. A 55-year-old female patient presented with severe somatosensory dysfunction of the left side caused by a spontaneous intracerebral hemorrhage on the right side. The somatosensory function of the affected side recovered to a nearly normal state at 7 weeks from onset. Functional magnetic resonance imaging revealed that at 3 weeks from onset, there was no cortical activation by touch at each hand; at 7 weeks, the contralateral cortex centered on the primary sensory cortex was found to be activated during touch and passive movements, and activation by passive movements was increased compared with that at 3 weeks. Diffusion tensor tractography revealed that a medial lemniscus on the affected (right) hemisphere was not observed at 3 weeks from onset, however, at 7 weeks, the unaffected (left) hemisphere passed along the medial lemniscus pathway from the pons to the primary sensory cortex. These findings indicate that combined functional magnetic resonance imaging and diffusion tensor tractography would allow more accurate evaluation of the architecture and integrity of somatosensory tracts and is a useful method to investigate the recovery of somatosensory dysfunction in stroke patients.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning,No.2013R1A1A3007734
文摘The somatosensory system plays a crucial role in executing precise movements by providing sensory feedback (Farrer et al., 2003; Rabin and Gordon, 2004). Somatosensory dys- function is a common problem following stroke. In partic- ular, somatosensory impairments, such as impairment in touch, proprioception, light touch, and vibration have been frequently observed (Carey et al., 1993; Sullivan and Hed- man, 2008; Tyson et al., 2008). Patients with somatosensory dysfunction show negative effects on motor control, and it sometimes becomes difficult to perform daily activities independently.
文摘Objective: Optimization of combining electroencephalography (EEG), short latency somatosensory evoked potentials (SLSEP) and transcranial Doppler (TCD) techniques to diagnose brain death. Methods: One hundred and eleven patients (69 males, 42 females) from the major hospitals of Zhejiang Province were examined with portable EEG, SLSEP and TCD devices. Re-examinations occurred ≤12 h later. Results: The first examination revealed that the combination of SLSEP and EEG led to more sensitive diagnoses than the combination of SLSEP and TCD. Re-examination confirmed this and also revealed that the combination of TCD and EEG was the most sensitive. Conclusion: The results show that using multiple techniques to diagnose brain death is superior to using single method, and that the combination of SLSEP and EEG is better than other combinations.
文摘Aim: The effect of a renewed SS-cream (RSSC) on the treatment of premature ejaculation (PE) was evaluated and compared with the original SS-cream (OSSC). Methods: Sixty male white New Zealand rabbits, weighing 2.5kg-3.0 kg, were divided at random into 3 groups: the RSSC, OSSC and placebo groups. The spinal somatosensory evoked potential (SSEP) elicited by electric stimulation of the glans penis with disk electrode was investigated with an electrophysiograph (Poseidomn, Shanghai, China) before and 10, 30 and 60 min after drug or placebo application on the glans. The Onset and the N1 latencies and the amplitude of SSEP were recorded and analyzed. Results: There was no significant difference (P>0.05) in the mean Onset and Nl latency of SSEP among the 3 groups before drug application. Compared with the pre-application value, the mean Onset and Nl latencies in the RSSC and OSSC groups were significantly prolonged at 10, 30 and 60 min after treatment (P<0.05), while they were not significantly changed (P>0.05) in the placebo group. The mean Onset latency of RSSC at 10 and 30 min and that of OSSC at 30 min were significantly delayed (P<0.05) compared with the placebo group. The mean Nl latency of RSSC at 30 and 60 min and that of OSSC group at 30 min were also significantly delayed (P<0.05). Conclusion: RSSC delays the latencies of SSEP, suggesting a local desensitizing effect on the sensory receptor of the glans penis dorsal nerve, which provides the potential for PE treatment. The desensitizing effect of RSSC is higher than that of OSSC.
基金the National Natural Science Foundation of Hainan Province,No.30318
文摘BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological changes cannot reflect functional alterations in a compressed nerve root. Dermatomal somatosensory evoked potential (DSEP) provides a means to assess the functional state of a nerve root. OBJECTIVE: To evaluate the clinical significance of DSEP, assessing the degree of nerve root injury following lumbar spinal stenosis. DESIGN, TIME AND SETTING: A case-control study was performed in the Department of Orthopaedic Surgery, Hainan People's Hospital, China, between September 2004 and December 2007. PARTICIPANTS: Forty-seven patients diagnosed with lumbar spinal stenosis by CT or MRI were selected as the case group; fifty healthy subjects were collected as the control group. METHODS: A KEYPOINT myoelectric evoked potential apparatus (DANTEC Company, Denmark) was used to measure DSEP, and stimulative spots were determined in accordance with the skin key sensory spot standards established by The American Spinal Injury Association: L4 in the medial malleolus, L5 in the third metatarsophalangeal joint of the dorsum of foot and S1 in the lateral heel. The needle electrode used as the recording electrode was located at the Cz point of the cranium, and the reference electrode at the Fz point. MAIN OUTCOME MEASURES: Latency of the P40 peak of DSEP, P1-N1 amplitude, P40 waveform and differentiation and disappearance of various waves. RESULTS: The sensitivity and diagnostic concurrence with surgery of nerve root injury following lumbar spinal stenosis evaluated by DSEP was 95.7 %. P40 latencies at L4, L5 and S1 in the case group were significantly longer than in the control group (P 〈 0.05), and the P1-N1 amplitude in the case group was significantly lower than the control group (P 〈 0.05-0.01). Nerve root injury was categorized according to DSEP latency as follows: severe damage (disappearance of the P40 wave in 103 dermatomes), moderate damage (prolongation of the P40 peak latency ≥ 3.0 times the standard deviation of the normal mean in 60 dermatomes) and mild damage (prolongation of the P40 peak latency ≥ 2.5 times the standard deviation of the normal mean in 31 dermatomes). CONCLUSION: DSEP can be used to determine the severity of nerve root injury following lumbar spinal stenosis with high sensitivity and specificity.
基金the Natural Science Foundation of Hainan Province, No. 30318
文摘BACKGROUND: It has been reported that dermatomal somatosensory evoked potential (DSEP) can be used for diagnosing nerve root injury in patients with lumbar disc herniation (LDH), and that 83% 95% of patients suffer from the disease. Body height correction is not performed prior to determinations of latency and latency difference between the healthy and affected sides. However, latency noticeably correlates to body height. OBJECTIVE: This study aims to determine the lumbosacral nerve root injury in patients with LDH by DSEP, and to evaluate the sensitivity of the DSEP difference between the healthy and affected sides using a diagnostic index following body height correction. DESIGN: A case-control observation. SETTING: Department of Orthopedic Surgery, Hainan Provincial People's Hospital. PARTICIPANTS: Ninety-six patients, comprised of 67 males and 29 females, with an average age of 43 years and a mean body height of 1.65 m (range 1.48-1.81 m), were recruited for this study. These patients suffered from unilateral lower limb radiation pain and received treatment at the Department of Orthopedic Surgery, Hainan Provincial People's Hospital between January 2004 and December 2006. All patients were confirmed to suffer from LDH at the L3-4, L-5, and/or Ls-SI by CT and/or MRI examinations. Central nervous system diseases were excluded. In order to obtain a normal reference value, DSEP was determined for a group of 50 subjects, who concurrently received health examinations in the same department. The subjects had no previous history of back leg pain or nervous system disease. The group of healthy controls included 26 males and 24 females, with an average age of 37 years and a mean body height of 1.63 m (range 1.50-1.80 m). Written informed consent was obtained from all subjects for laboratory samples. The protocol was approved by the Hospital's Ethics Committees. DSEP was determined with myoelectricity-evoked potential equipment (Keypoint, Batch No. 9020A0042591, Dantec Company, Denmark). METHODS: DSEP of patients with LDH was determined. Constant-voltage square pulse stimulation was used to determine DSEP, with the following parameters: a pulse wave width of 0.2 milliseconds; a saddle-like stimulating electrode; a stimulation intensity 3 times greater than the sensation threshold; a stimulation frequency of 1.5 Hz; mean superposition greater than 100 times; and inter-electrode impedance 〈 5 k Q. The stimulation point was a skin key sensation point confirmed by the American Spinal Injury Association, i.e. L4 at medial malleolus, L5 at the third metatarsophalangeal joint on the dorsum of the foot, and SI at the lateral heel. The recording electrode was a needle electrode, the recording point was Cz, and the reference electrode was Fz. DSEP latency of P40, and latency differences of P40, between the healthy side and the affected side, were determined. DSEP at L4, L5, and S1 nerve roots of the lower limbs of 50 healthy controls were bilaterally determined. The normal values of P40 latency and P40 N50 amplitude were statistically obtained. MAIN OUTCOME MEASURES: Determination of DSEP values. RESULTS: Ninety-six patients with LDH and fifty healthy controls participated in the final analysis. In the healthy controls, the amplitude of DSEP varied greatly, with a mean amplitude co-efficient of variation of 58% for L4, L5, and SI dermatomes. P40 latency was stable, with a mean latency coefficient of variation of 4.7%. In patients with LDH, the P40 wave disappeared. P40 latency was 2.5 times prolonged compared to normal mean value. P40 latency difference between the healthy and the affected side was 2.5 times higher than the normal mean value of the healthy side. CONCLUSION: DSEP can reflect the functional status of lumbosacral nerve root. P40 latency difference between the healthy side and the affected side is the most sensitive diagnosis index for patients with LDH suffering from unilateral lower limb radiation pain.
文摘Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. Methods: Form January, 2019 to December, 2019, 80 cerebrovascular disease patients were recruited, and had been divided into control group (n = 40) and observation group (n = 40), randomly. The control groups received conventional rehabilitation treatment, for 40 minutes per day, while observation group received conventional rehabilitation treatment, for 20 minutes per day, and virtual reality technology treatment, 20 minutes per day, 5 days a week for 4 weeks. Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel index (MBI) were used to assess the motor function of the upper limbs and ADL before and after treatment. Results: Before treatment, the scores of WMFT, FMA-UE and MBI were no significant difference between two groups (P > 0.05). The scores improved in both groups after treatment (P < 0.01), and were higher in the observation group than in the control group (P < 0.05). Conclusion: The somatosensory interaction technology combined with virtual reality technology could facilitate to improve the upper limbs function and ADL in cerebrovascular disease patients.
基金supported by Major State Basic Research Development Program of China(973 Program),No.2011CB504400
文摘The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.
基金the National Natural Science Foundation of China, No. 30300075China Postdoctoral Science Foundation, No. 20080440995Sichuan Science Fund for Out-standing Youths, No. 05ZQ026-020
文摘BACKGROUND: Studies have shown that latency changes of some elements in a somatosensory evoked potential (SEP) and motor evoked potential (MEP) can reflect electrical activity of cerebral cortical neurons and conduction of white matter nerve fibers. However, there is a paucity of information regarding the dynamic observation of SEP and MEP following cerebral ischemic injury. OBJECTIVE: To explore SEP and MEP changes following acute ischemic stroke, and investigate the role of evoked potentials in monitoring brain function in stroke. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University from September 2007 to August 2008. MATERIALS" Hydrogen blood flow detector was purchased from Soochow University Medical Instrument Co., China, and Power lab system was purchased from AD Instruments, Inc., USA. METHODS A total of 36 healthy, adult, male, Sprague Dawley rats were randomly assigned to four groups (n = 9), including three ischemia groups (12, 24 and 72 hours of ischemia) and a sham-surgery group. The rat model of acute ischemic stroke was established by middle cerebral artery occlusion (MCAO) in the left hemisphere. MAIN OUTCOME MEASURES" SEP and MEP of the left limbs were detected, and cerebral blood flow was measured by the hydrogen cleaning method. RESULTS: The latency of positive wave 1 (P1), negative wave 1 (N1) and positive wave 2 (P2) waves in SEP, and latency of negative wave 1,2 (N1, N2) waves in MEP were significantly prolonged with increasing ischemic duration following MCAO (P 〈 0.01), but cerebral blood flow was significantly decreased (P 〈 0.05, or P 〈 0.01). CONLUSION: Ischemic stroke prolongs the latency of SEP waves (P1, N1, P2) and MEP waves (N1, N2), and cerebral cortical evoked potential may correlate with cerebral blood flow changes. This indicates that SEP and MEP can be used to evaluate brain function following acute ischemic stroke.
基金Technological Developing Plan of Science and Technology Bureau of Shandong Province, No. 032050116
文摘BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. However, the effects of ligustrazine on SEP is still not clear. OBJECTIVE : To study the protective effects of ligustrazini injection on cerebral ischemia-reperfusion injury.DESIGN: Auto-control study, random grouping.SETTING: Qilu Hospital of Shandong University.MATERIALS: The experiment was completed in the Cerebral Functional Room of Qilu Hospital Affiliated to Shandong University from March 2002 to June 2004. A totally of 24 healthy Harbin rabbits were randomly divided into blank control group (n=8), model control group (n=8) and ligustrazine treatment group (n=8). Hydrochloric ligustrazine injection, 40 mg/2 mL each ampoule, was provided by the Third Pharmaceutical Factory of Beijing (certification: 93035236273). The main component was hydrochloric ligustrazine and the chemical name was 2, 3, 5, 6-tetramethyl pyrazine hydrochloride. METHODS:① Modeling method: The bilateral common carotid artery ligation was adopted to make the model. ② Index of cerebral functional lesion evaluated with SEP during ischemia-reperfusion: DISA 2000C neuromyoeletrometer provided by Dantec Electronics Ltd, Denmark was used to detect SEP. ③ Interventional process: Blank control group: The latencies and amplitudes of SEP were measured before injection with 1.5 mg/kg ligustrazine and at the points of 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after injection. Ligustrazine treatment group: Rabbits were injected with 1.5 mg/kg ligustrazine, and those of model control group were injected the same volume of saline. Thirty minutes later, the bilateral common carotid artery of the rabbits all had been ligated for 30 minutes, and then reperfused for 120 minutes. The latencies and amplitudes of SEP were measured before injection, before ligation, at the points of 1 minute, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes after ligation, and at the points of 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after reperfusion.④ Evaluating criteria: Normal values of P-wave latencies and amplitudes were (19.34±3.18) ms and (4.55±1.43)μV. Average value before injection in blank control group and average values before injection, after injection and before ligation in ischemiareperfusion group were regarded as control criteria to evaluate changes of P-wave latencies and amplitudes after experiment. MAIN OUTCOME MEASURES: P-wave latencies and amplitudes of SEP in the three groups.RESULTS : A total of 24 rabbits were involved in the final analysis without any loss.① Blank control group: The P-wave latencies delayed markedly at each time point after injection. Compared with that before injection, there was a significant difference (P 〈 0.05-0.01). The P-wave amplitudes did not fluctuate noticeably all the time after injection, but significantly decreased when compared with those before injection (P 〈 0.05-0.01). ② Ischemia-reperfusion group: The P-wave latencies delayed and amplitudes decreased in the rabbits with cerebral ischemia-reperfusion at all points of time during cerebral ischemia-reperfusion, and there was significant difference when compared with the levels before ischemia (P 〈 0.05). When ligustrazine was injected, the latencies and amplitudes changed less, and as compared with the levels before ischemia, the difference was not significant (P〉 0.05).CONCLUSION:① Ligustrazine can inhibit P-wave latencies and amplitudes of SEP of normal rabbits.②Ligustrazine can improve P-wave latencies and amplitudes of SEP of rabbits with cerebral ischemia-reperfusion injury.