A combined computational and experimental investigation to examine temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented.A numerical simulation was conducted by using a relatively ...A combined computational and experimental investigation to examine temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented.A numerical simulation was conducted by using a relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model.Thermal radiation was calculated using the discrete ordinates method.An image processing technique and a decoupled reconstruction method were used to simultaneously measure the distributions of temperature and soot volume fraction.The results show that the maximum error for temperature does not exceed 10% between the prediction and the measurement.And the maximum error is 6.9% for soot volume fraction between prediction and measurement.Additional simulations were performed to explore the effects of global equivalence ratio on diffusion flames and the soot formation.The results display that the soot formation increases with decreasing the coflow air velocity.And the soot formation in each case appears in the annular region,where the temperature ranges from about 1 000 K to 2 000 K and the profile becomes taller and wider when the coflow air is decreased.展开更多
This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the rad...This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the radiative energy images captured by a charge-coupled device(CCD)camera.The least squares QR decomposition method was introduced to deal with the reconstruction inverse problem.The effects of ray numbers and measurement errors on the reconstruction accuracy were investigated.It was found that the reconstruction accuracies for volume fraction fields of soot and metaloxide nanoparticles were easily affected by the measurement errors for radiation intensity,whereas only the metal-oxide volume fraction field reconstruction was more sensitive to the measurement error for the volume fraction ratio of metaloxide nanoparticles to soot.The results show that the temperature,soot volume fraction,and metal-oxide nanoparticles volume fraction fields can be simultaneously and accurately retrieved for exact and noisy data using a single CCD camera.展开更多
With the growing applications of nanofluid flame, the monitoring and controlling of its combustion process is of paramount importance. Thus, it is necessary to develop diagnosing methods which can simultaneously image...With the growing applications of nanofluid flame, the monitoring and controlling of its combustion process is of paramount importance. Thus, it is necessary to develop diagnosing methods which can simultaneously image important parameters such as temperature and volume fractions of soot, metal-oxide nanoparticles. Tomographic emission spectroscopy is an effective method which has been proposed for this purpose. However, the inversion process was only reported with least-squares QR decomposition(LSQR) so far and there are numerous well-established reconstruction algorithms which have not been utilized yet.Thus, this work aims to perform systematic comparative studies on several representative algorithms for the inversion process. In the simulative studies, algorithms including Tikhonov regularization, algebraic reconstruction technique(ART), LSQR,Landweber algorithm, maximum likelihood expectation maximization(MLEM), and ordered subset expectation maximization(OSEM) were discussed. The effects of the number of iterations, the signal-to-noise ratio, and the number of projections and the calibration error in projection angles on the performance of the algorithms were investigated. Advice on selecting the suitable algorithms under different application conditions is then provided according to the extensive numerical studies.展开更多
基金Projects(50806024,50806023 and 50806026) supported by the National Natural Science Foundation of China
文摘A combined computational and experimental investigation to examine temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented.A numerical simulation was conducted by using a relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model.Thermal radiation was calculated using the discrete ordinates method.An image processing technique and a decoupled reconstruction method were used to simultaneously measure the distributions of temperature and soot volume fraction.The results show that the maximum error for temperature does not exceed 10% between the prediction and the measurement.And the maximum error is 6.9% for soot volume fraction between prediction and measurement.Additional simulations were performed to explore the effects of global equivalence ratio on diffusion flames and the soot formation.The results display that the soot formation increases with decreasing the coflow air velocity.And the soot formation in each case appears in the annular region,where the temperature ranges from about 1 000 K to 2 000 K and the profile becomes taller and wider when the coflow air is decreased.
基金Project supported by the National Natural Science Foundation of China(Grant No.51576100)the Project of"Six Talent Summit"of Jiangsu Province,China(Grant No.2014-XNY-002)
文摘This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the radiative energy images captured by a charge-coupled device(CCD)camera.The least squares QR decomposition method was introduced to deal with the reconstruction inverse problem.The effects of ray numbers and measurement errors on the reconstruction accuracy were investigated.It was found that the reconstruction accuracies for volume fraction fields of soot and metaloxide nanoparticles were easily affected by the measurement errors for radiation intensity,whereas only the metal-oxide volume fraction field reconstruction was more sensitive to the measurement error for the volume fraction ratio of metaloxide nanoparticles to soot.The results show that the temperature,soot volume fraction,and metal-oxide nanoparticles volume fraction fields can be simultaneously and accurately retrieved for exact and noisy data using a single CCD camera.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51706141 and 51976122)。
文摘With the growing applications of nanofluid flame, the monitoring and controlling of its combustion process is of paramount importance. Thus, it is necessary to develop diagnosing methods which can simultaneously image important parameters such as temperature and volume fractions of soot, metal-oxide nanoparticles. Tomographic emission spectroscopy is an effective method which has been proposed for this purpose. However, the inversion process was only reported with least-squares QR decomposition(LSQR) so far and there are numerous well-established reconstruction algorithms which have not been utilized yet.Thus, this work aims to perform systematic comparative studies on several representative algorithms for the inversion process. In the simulative studies, algorithms including Tikhonov regularization, algebraic reconstruction technique(ART), LSQR,Landweber algorithm, maximum likelihood expectation maximization(MLEM), and ordered subset expectation maximization(OSEM) were discussed. The effects of the number of iterations, the signal-to-noise ratio, and the number of projections and the calibration error in projection angles on the performance of the algorithms were investigated. Advice on selecting the suitable algorithms under different application conditions is then provided according to the extensive numerical studies.