期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Effects of galactooligosaccharide glycation on the functional properties of soy protein isolate and its application in noodles
1
作者 Meiyue Wang Guanhao Bu +3 位作者 Yufei Xing Mengke Ren Yang Wang Yijing Xie 《Grain & Oil Science and Technology》 CAS 2024年第3期159-167,共9页
Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified ... Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified by dry heat glycation of galactooligosaccharides(GOS). The gel properties, antioxidant properties and structural changes of SPI-GOS conjugates were investigated. The application of SPI-GOS conjugates in noodles was also explored. The results observed that the glycation degree of SPI increased with the increasing reaction time. SDS-PAGE and spectral analysis showed the changes of spatial conformation of SPI after glycation. The antioxidant activity of SPI increased after glycation and DPPH radical scavenging activity of SPI-GOS peaked at 48 h of reaction. The hardness, elasticity and resilience of soybean protein gel reached their relative maximum at 48 h, 48 h and 12 h of glycation reaction, respectively. Moreover, the appropriate addition of glycated SPI improved the quality of noodles. The noodles with 4% addition of SPI-GOS had higher hardness, elasticity and tensile properties. This study will provide an effective method to modify soybean protein and expand the use of soybean protein in food industry. 展开更多
关键词 soy protein isolate Glycation GALACTOOLIGOSACCHARIDE Functional properties NOODLES
下载PDF
Soy Protein Isolate Non-Isocyanates Polyurethanes(NIPU)Wood Adhesives 被引量:5
2
作者 Xinyi Chen Antonio Pizzi +3 位作者 Xuedong Xi Xiaojian Zhou Emmanuel Fredon Christine Gerardin 《Journal of Renewable Materials》 SCIE EI 2021年第6期1045-1057,共13页
Soy-protein isolate(SPI)was used to prepare non-isocyanate polyurethane(NIPU)thermosetting adhesives for wood panels by reacting it with dimethyl carbonate(DMC)and hexamethylene diamine.Both linear as well as branched... Soy-protein isolate(SPI)was used to prepare non-isocyanate polyurethane(NIPU)thermosetting adhesives for wood panels by reacting it with dimethyl carbonate(DMC)and hexamethylene diamine.Both linear as well as branched oligomers were obtained and identified,indicating how such oligomer structures could further cross-link to form a hardened network.Unusual structures were observed,namely carbamic acid-derived urethane linkages coupled with lactam structures.The curing of the adhesive was followed by thermomechanical analysis(TMA).It appeared to follow a two stages process:First,at a lower temperature(maximum 130℃),the growth of linear oligomers occurred,finally forming a physically entangled network.This appeared to collapse and disentangle,causing a decrease of MOE,as the temperature increases.This appears to be due to the ever more marked Brownian movements of the linear oligomer chains with the increase of the temperature.Second,chemical cross-linking of the chains appeared to ensue,forming a hardened network.This was shown by the thermomechanical analysis(TMA)showing two distinct MOE maxima peaks,one around 130℃ and the other around 220℃,with a very marked MOE decrease between the two.Plywood panels were prepared and bonded with the SPI-NIPU wood adhesive and the results obtained are presented.The adhesive appeared to pass comfortably the requirements for dry strength of relevant standards,showing to be suitable for interior grade plywood panels.It did not pass the requirements for wet tests.However,addition of 15%of glycerol diglycidyl ether improved the wet tests results but still not enough to satisfy the standards requirements. 展开更多
关键词 Bio-based wood adhesives soy protein isolate non-isocyanate polyurethanes(NIPU) wood panels MALDI ToF
下载PDF
Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide 被引量:4
3
作者 Junmiao Zhang Hengjun Du +5 位作者 Ning Ma Lei Zhong Gaoxing Ma Fei Pei Hui Chen Qiuhui Hu 《Food Science and Human Wellness》 SCIE CSCD 2023年第1期183-191,共9页
Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes pol... Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes polysaccharide(FVP)were investigated.Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution.Under electrostatic interaction,the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process.Low salt concentration(C_(NaCl)=10,50 mmol/L)led to an increase in the critical pH values(pHc,pHφ1)while the critical pH values decreased when C_(NaCl)≥100 mmol/L.The concentration of NaCl ions increased the content ofα-helix.With the increase of FVP,the critical pH values decreased and the content ofβ-sheet increased through electrostatic interaction.At SPI/FVP ratio of 10:1 and 15:1,the complex coacervation of SPI/FVP were saturated,and the coacervates had the same storage modulus value.SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at C_(NaCl)=50 mmol/L.The optimal pH,SPI/FVP ratio and NaCl concentration of complex coacervation were collected,and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients. 展开更多
关键词 soy protein isolate Flammulina velutipes polysaccharide Electrostatic interaction Complex coavervation Storage modulus
下载PDF
Soy Protein Isolate Film by Incorporating Mandelic Acid as Well as Through Fermentation Mediated by Bacillus Subtilis 被引量:2
4
作者 Rakesh Kumar Priya Rani K.Dinesh Kumar 《Journal of Renewable Materials》 SCIE 2019年第2期103-115,共13页
Soy protein isolate(SPI)biopolymeric films were prepared by adding different contents of mandelic acid(1 to 5%wrt SPI)to glycerol plasticized SPI by solution casting method.Also,SPI was fermented by Bacillus subtilis ... Soy protein isolate(SPI)biopolymeric films were prepared by adding different contents of mandelic acid(1 to 5%wrt SPI)to glycerol plasticized SPI by solution casting method.Also,SPI was fermented by Bacillus subtilis to get fermented SPI films by solution casting.Molecular mass determination of mandelic acid incorporated and fermented SPI films was carried out by sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE).Mandelic acid incorporated and fermented SPI films were characterized by Fourier-transform infrared spectroscopy(FT-IR),dynamic mechanical analysis(DMA),tensile strength,water uptake and optical transmittance studies.Results indicated that incorporation of mandelic acid in SPI resulted in high tensile strength(8.03 MPa)and highα-relaxation(Tα)as well as low water uptake.On the other hand,films cannot be prepared from fermented SPI with SPI contents of 8%and 12%.However,film from fermented SPI with 16%SPI content could be prepared but it exhibited low tensile strength(3.18 MPa)and low Tαas well as high water uptake.The resulting mandelic acid incorporated SPI films were also subjected to antimicrobial studies.At all the concentration of mandelic acid,we can easily observe the antimicrobial effect in mandelic acid incorporated SPI films unlike fermented SPI films.This work will be helpful in fabricating antimicrobial SPI film from renewable resources. 展开更多
关键词 soy protein isolate mandelic acid FERMENTATION FILM tensile properties antimicrobial properties
下载PDF
PREPARATION AND CHARACTERIZATION OF SOY PROTEIN ISOLATE(SPI)/MONTMORILLONITE(MMT) BIONANOCOMPOSITES 被引量:1
5
作者 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第6期843-849,共7页
The bionanocomposites of soy protein isolate(SPI)/montmorillonite(MMT) have been prepared successfully via simple melt mixing,in which MMT was used as nanofiller and glycerol was used as plasticizer.Their structures a... The bionanocomposites of soy protein isolate(SPI)/montmorillonite(MMT) have been prepared successfully via simple melt mixing,in which MMT was used as nanofiller and glycerol was used as plasticizer.Their structures and properties were characterized with X-ray diffraction(XRD),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),thermogravimetric analysis and tensile testing.XRD、TEM and SEM results indicated that the MMT layers could be easily intercalated by the SPI matrix even by simpl... 展开更多
关键词 soy protein isolate BIODEGRADABLE Namocomposites EXFOLIATION
下载PDF
ZnSe Nanoparticles Reinforced Biopolymeric Soy Protein Isolate Film 被引量:1
6
作者 Rakesh Kumar Reshma Praveen +3 位作者 Shikha Rani K.Sharma K.P.Tiwary K.Dinesh Kumar 《Journal of Renewable Materials》 SCIE 2019年第8期749-761,共13页
ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride,selenium powder and ethylene diamine.The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as ... ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride,selenium powder and ethylene diamine.The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as well as morphological characterization was done by scanning electron microscope(SEM).The crystallite size after synthesis was obtained around 30 nm for pure ZnSe nanocrystallites.However,from SEM micrograph,agglomerated ZnSe nanoparticles of irregular shapes were observed.The as-synthesized ZnSe nanoparticles at different contents(1 to 5%w/w w.r.t SPI)were incorporated into soy protein isolate(SPI)to produce reinforced SPI films by solution casting method.The ZnSe nanoparticles incorporated SPI suspensions were subjected to molecular mass and specific conductivity studies.Neat and ZnSe nanoparticles incorporated SPI films were structurally and mechanically characterized by FT-IR and tensile properties,respectively.Transmittance and water uptake studies were also carried out for ZnSe nanoparticles incorporated SPI films.The tensile strength and modulus increased from 5.80 MPa to 10.06 MPa and 18.84 MPa to 94.70 MPa with the increase in the contents of ZnSe nanoparticles from 0 to 5%.Moreover,the results also revealed a good antibacterial effect in ZnSe nanoparticles incorporated SPI film.The main application of nanoparticles incorporated SPI film will be in the area of biodegradable packaging. 展开更多
关键词 soy protein isolate ZnSe nanoparticles reinforced film tensile properties antimicrobial properties
下载PDF
Rheological Properties of Soy Protein Isolate and Polyurethane in the PAN/DMSO Solution 被引量:1
7
作者 肖茹 尹端 顾利霞 《Journal of Donghua University(English Edition)》 EI CAS 2009年第4期339-343,共5页
The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution... The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution properties. There are opposite effects of SPI and PU in the PAN/DMSO solution. Their apparent viscosity, degree of non-Newtonian fluid, and extent of structuralization of blend system increase with the addition of SPI, whereas, all of these decrease with the addition of PU. Moreover, the theological properties of PAN/DMSO solution were affected when SPI and PU were added equally, and SPI presented more effect when the proportion of ingredient was less, and PU presented more effect when the proportion of ingredient was more. 展开更多
关键词 rheological properties soy protein isolate POLYURETHANE POLYACRYLONITRILE dirneth ylsulfoxide
下载PDF
Drying kinetics of soy protein isolate-corn starch film during preparation and its moisture adsorption characteristics during storage 被引量:1
8
作者 Tingwei Zhu Jinyu Yang +3 位作者 Wanting Qin Yadong Tian Yingying Wang Xingfeng Guo 《Grain & Oil Science and Technology》 CAS 2023年第3期120-126,共7页
To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation ... To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation conditions during the drying process and the moisture adsorption characteristics of the SPI-CS films under different humidity conditions were investigated.Within the range of experimental conditions,the moisture migration rule in the SPI-CS films during the drying preparation was combined with the Page model which was expressed as MR=exp(-kt^(n)).It was found that the adsorption equilibrium needed shorter time(about 3 h)when the SPI-CS films existed in the environment with lower humidity(RH<54%).Additionally,the secondorder adsorption kinetic equation was successful to describe the moisture adsorption characteristic of the SPICS films during storage under different humidity conditions. 展开更多
关键词 soy protein isolate Corn starch FILM Drying kinetics MOISTURE
下载PDF
Completely Green Synthesis of Ag Nanoparticles Stabilized by Soy Protein Isolate under UV Irradiation 被引量:1
9
作者 刘仁 刘晓亚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期852-856,共5页
A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the pre... A completely green pathway for the preparation of Ag nanoparticles was proposed, by using soy protein isolate (SPI) as stabilizer under UV irradiation and H2O as the environmentally benign solvent throughout the preparation. Transmission electronic microscopy (TEM) and zeta potential characterization results indicated that the Ag nanoparticles were stable and well dispersed with an average diameter about 13 nm, and X-ray diffraction (XRD) analysis of SPI/Ag composite nanoparticles confirmed the formation of metallic silver. UV-Vis spectrum showed that the Ag nanoparticles dispersion solution had the maximum absorbance at about 430 nm due to surface plasmon resonance of the Ag nanoparticles. Infrared spectroscopy confirmed that the polypeptide backbone of SPI was not cleaved during the conjugation process and that some active amino groups were oxidized. The SPI/Ag composite nanoparticles have excellent antibacterial activity against two representative bacteria, staphylococcus aureus (Gram positive) and escherichia coli (Gram negative) in the presence of SPI. 展开更多
关键词 soy protein isolate Ag nanoparticles UV irradiation
下载PDF
Study on the Hydrogen Bond Interaction Between Soy Protein Isolate and Glycerol Using Two-Dimensional Correlation Fourier-Transform Infrared Spectroscopy
10
作者 YAN Zhi-wei YANG He-li ZHANG Pu-dun 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第S1期85-86,共2页
A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensi... A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%. 展开更多
关键词 Two-dimensional correlation infrared spectroscopy soy protein isolate GLYCEROL Hydrogen bond interaction
下载PDF
Soy protein isolate(SPI)-hemin complex nanoparticles as a novel water-soluble iron-fortifier:Fabrication,formation mechanism and in vitro bioavailability
11
作者 Chao Fan Jiang-lan Yuan +1 位作者 Jing Guo Xu Kang 《Food Bioscience》 SCIE 2022年第5期369-377,共9页
Hemin is recognized as a superior biological iron-fortifier in the prevention and treatment of iron deficiency anemia.Nevertheless,free hemin could have low bioavailability due to its insolubility in intestinal fluid ... Hemin is recognized as a superior biological iron-fortifier in the prevention and treatment of iron deficiency anemia.Nevertheless,free hemin could have low bioavailability due to its insolubility in intestinal fluid after passing through the digestive tract,so hemin as a direct fortifier is not as effective as it should be.In this study,a novel hemin-delivery system with good water-solubility was developed by fabricating soy protein isolate(SPI)-hemin complex nanoparticles through pH-driven method,and the formation mechanism and bioavailability were also investigated.Hemin could bind to SPI and form nanoparticles with a diameter ranging from 100 to 300 nm in the process of pH dropping from 12.0 to 7.0,and thereby significantly improve the water-solubility of hemin.It was proved that the nanoparticles were produced mainly through hydrophobic interaction between SPI and hemin,and driven by entropy.The results from in vitro simulated gastrointestinal digestion experiments indicated that bioavailability of hemin was also significantly improved(P<0.05),and the value in SPI-hemin nanoparticles reached nearly 80%at the concentrations of 1.0%(w/v)SPI and 0.25%(w/v)hemin.SPI-hemin nanoparticles could be an innovation for improving the solubility and bioavailability of hemin and an easily acceptable candidate for the design of novel iron-fortified foods. 展开更多
关键词 Hemin soy protein isolate pH-driven Nanoparticle Interaction Bioavailability
原文传递
Effect of fermented cream with partial substitution of soy protein isolate on bread quality and volatile compounds
12
作者 Dan Xu Yulu Peng +3 位作者 Fengfeng Wu Yamei Jin Na Yang Xueming Xu 《Food Bioscience》 SCIE 2022年第6期1784-1793,共10页
This study aimed to improve the bread quality, especially aroma, using the fermented cream-soy protein isolate (SPI) flavor and reveal the improvement mechanisms. The cream with partially substituted SPI was fermented... This study aimed to improve the bread quality, especially aroma, using the fermented cream-soy protein isolate (SPI) flavor and reveal the improvement mechanisms. The cream with partially substituted SPI was fermented by lactic acid bacteria to enhance its flavor and used for bread making. The study also explored the positive effect of fermented cream on bread quality, especially the aroma formation. The bread quality was assessed by sensory evaluation, texture, and color determination, and the changes in bread dough characteristics were evaluated using a rheofermentometer and a dynamic rheometer. Furthermore, the influence of fermented cream-SPI flavor on bread volatile compounds (VOCs) was investigated using gas chromatography–mass spectrometry and principal component analysis. The results showed that the fermented cream-SPI flavor improved the texture of bread by increasing the gas production and the gluten strength of the dough. It reduced the crumb hardness from 337 ± 12 g to 171 ± 6 g and increased the specific volume from 3.51 ± 0.05 g/mL to 4.19 ± 0.06 g/mL. Moreover, the cream-SPI flavor improved the bread aroma by providing VOCs directly (acids, 2-nonanone, 2-undecanone, 2-tridecanone, and δ-dodecalactone) or precursor substances for VOC formation [esters, (E,E)-2,4-nonadienal, (E)-2-nonenal, and 1-octen-3-ol] during the bread-making process. The present study suggested that the partial substitution of SPI in cream after fermentation had great potential as a bread quality improver to enhance both the texture and aroma of bread. 展开更多
关键词 Bread quality Fermentation Lactic acid bacteria soy protein isolate substitution Volatile compounds
原文传递
Emulsion-filled gels of soy protein isolate for vehiculation of vitamin D3:Effect of protein solubility on their mechanical and rheological characteristics 被引量:2
13
作者 Letícia S.Ferreira Thais C.Brito-Oliveira Samantha C.Pinho 《Food Bioscience》 SCIE 2022年第1期75-87,共13页
The aim of this study was to develop heat-induced gels of soy protein isolate(SPI)filled with Brazil nut oil emulsions encapsulating vitamin D3(VD3).Before gelation,dispersions produced with different SPI concentratio... The aim of this study was to develop heat-induced gels of soy protein isolate(SPI)filled with Brazil nut oil emulsions encapsulating vitamin D3(VD3).Before gelation,dispersions produced with different SPI concentrations(11-15%,w/w)were subjected to different pretreatments(manual mixing or mechanical stirring at 800 rpm for 10,20,and 30 min)and had their protein solubility quantified.The application of mechanical stirring increased the solubility of proteins and decreased the average particle size,affecting the microstructure(observed by confocal laser scanning microscopy)and rheological properties(evaluated by uniaxial compression and small strain oscillatory tests)of the heat-set gels.The incorporation of emulsions(produced with Brazilian nut oil)into gels formed emulsion filled gels(EFGs),which presented higher Young’s moduli andσH in comparison to non-filled gels(NFGs),indicating that the oil droplets were active within the matrices.The properties of EFGs subjected to small strain oscillatory tests,varied with the pretreatment conditions and SPI concentrations,highlighting the high influence of protein solubility,matrix inhomogeneities,and droplet clustering for determining the properties of such complex systems.Also,the heat-induced emulsion-filled gels of SPI produced were effective in protecting VD3,presenting good retention after 30 days of storage under refrigeration,and represent promising alternative for the production of future food gelled products. 展开更多
关键词 Emulsion-filled gels soy protein isolate CHOLECALCIFEROL Gel structure
原文传递
Assessment and distinction of commercial soy protein isolate product functionalities using viscosity characteristic curves 被引量:1
14
作者 Jing Ting Xu He Liu +1 位作者 Jian Hua Ren Shun Tang Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第9期1051-1054,共4页
To simplify the assessment method of soy protein isolate (SPI) functionalities, the viscosity and functionalities of commercial SPI products were studied. Viscosity value (y) increases With increasing concentrati... To simplify the assessment method of soy protein isolate (SPI) functionalities, the viscosity and functionalities of commercial SPI products were studied. Viscosity value (y) increases With increasing concentration (x) and exhibits a highly significant correlation with the exponential equation y = a. ebx. The b values of products are gradually enhanced from dispersion, emulsion and injected to gel type. Products with low b values (〈0.2), and high dispersivity were dispersion-type. Products having high b values (〉0.4) and gel springiness were gel-type. The other products with centered b value (0.2-0.4), high solubility and emulsifying capacity were emulsion-type. 展开更多
关键词 soy protein isolate Functional properties Viscosity curve
原文传递
Biocompatible and antibacterial soy protein isolate/quaternized chitosan composite sponges for acute upper gastrointestinal hemostasis 被引量:1
15
作者 Zijian Wang MeiFang Ke +7 位作者 Liu He Qi Dong Xiao Liang Jun Rao Junjie Ai Chuan Tian Xinwei Han Yanan Zhao 《Regenerative Biomaterials》 SCIE 2021年第4期107-118,共12页
Innovative biomedical applications have high requirements for biomedical materials.Herein,a series of biocompatible,antibacterial and hemostatic sponges were successfully fabricated for the treatment of acute upper ga... Innovative biomedical applications have high requirements for biomedical materials.Herein,a series of biocompatible,antibacterial and hemostatic sponges were successfully fabricated for the treatment of acute upper gastrointestinal bleeding(AUGB).Quaternized chitosan(QC)and soy protein isolate(SPI)were chemically cross-linked to obtain porous SPI/QC sponges(named SQS-n,with n¼30,40,50 or 60 corresponding to the weight percentage of the QC content).The chemical composition,physical properties and biological activity of SQS-n were investigated.SQS-n could support the adhesion and proliferation of L929 cells while triggering no obvious blood toxicity.Meanwhile,SQS-n exhibited good broad-spectrum antibacterial activity against both grampositive bacteria(Staphylococcus aureus)and gram-negative bacteria(Escherichia coli).The in vivo hemostatic effect of SQS-n was evaluated using three different bleeding models.The results revealed that SQS-50 performed best in reducing blood loss and hemostatic time.The overall hemostatic effect of SQS-50 was comparable to that of a commercial gelatin sponge.The enhanced antibacterial and hemostatic activities of SQS-n were mainly attributed to the QC component.In conclusion,this work developed a QC-functionalized hemostatic sponge that is highly desirable for innovative biomedical applications,such as AUGB. 展开更多
关键词 quaternized chitosan soy protein isolate BIOCOMPATIBILITY ANTIBACTERIAL HEMOSTASIS
原文传递
Influence of soy protein isolate on the gel properties of walnut protein isolate-κ-carrageenan treated with NaCl 被引量:2
16
作者 Yuqing Lei Lulu Ma +5 位作者 Hui Ouyang Wu Peng Feiran Xu Ping Wang Long Jin Shugang Li 《Journal of Future Foods》 2023年第4期364-373,共10页
The demand for plant protein is increasing significantly due to the shortage of protein resources.Walnut protein,the main by-product of preparing walnut oil,has limited application in the food industry due to its poor... The demand for plant protein is increasing significantly due to the shortage of protein resources.Walnut protein,the main by-product of preparing walnut oil,has limited application in the food industry due to its poor solubility.It was found that the soy protein isolate(SPI)concentration had significant effects on the gel properties of the walnut protein isolate(WNPI)-κ-Carrageenan(KC)composite system treated with 15 mmol/L NaCl.The results showed that the gel strength of the composite system increased first and then decreased with the increased concentration of SPI from 0 to 2.5%.The best rheological properties,texture properties,water holding capacity((92.03±1.05)%),swelling ratio((2.04±0.19)%),freeze-thaw stability and thermal stability(85.53°C)of the composite gel were found at an SPI concentration of 1%.In the meantime,the secondary structure of protein had the least α-helix content of 10.17% and the highest β-sheet content of 39.64%,the fluorescence intensity and free sulfhydryl content reached the highest value.1% SPI could also act as a filler for WNPI to enhance the intermolecular forces such as hydrophobic interaction between the two substances,thus forming a stable gel network structure.This study can provide technical support for improving the gel properties of walnut protein and producing new plant protein gel products. 展开更多
关键词 Walnut protein isolate soy protein isolate Κ-CARRAGEENAN Gel properties
原文传递
Comparison of Interfacial and Foaming Properties of Soy and Whey Protein Isolates
17
作者 Cecilia Abirached Claudia Alejandra Medrano +3 位作者 Aria Claudia Araujo Patrick Moyna Maria Cristina Anon Luis Alberto Panizzolo 《Journal of Food Science and Engineering》 2012年第7期376-381,共6页
A comparative study on the foaming properties and behavior at the air-water interface of soy and whey protein isolates were made, Foams were obtained by the method of gas bubbling. The initial rate of passage of liqui... A comparative study on the foaming properties and behavior at the air-water interface of soy and whey protein isolates were made, Foams were obtained by the method of gas bubbling. The initial rate of passage of liquid to the foam (vi) and the maximum volume of liquid incorporated to the foam (VLEmax) were determined. The destabilization process of the formed foams was analyzed by a biphasic second order equation. Measurements of equilibrium surface tension (water/air) and surface rheological properties were carried out in a dynamic drop tensiometer. The foaming capacity (vi and VLEmax) and the stability of foams prepared with the whey protein isolates (WPI) were better than those formulated with the soy protein isolates (SPI). WPI foams were more stable showing the lower values of rate constants of gravity drainage and disproportion. There were significant differences (P 〈 0.05) in the dilatational modulus in the surface rheology measurements, which were higher at the interface with WPI, implying greater resistance of the film formed to collapse and disproportion. In conclusion, WPI formed better and more stable foams than the SPI. 展开更多
关键词 soy protein isolates (SPI) whey protein isolates (WPI) disproportion gravitational drainage.
下载PDF
Analysis of Wettability and X-ray Photoelectron Spectroscopy of Wheat Straw/SPI
18
作者 刘志明 沈江华 《Agricultural Science & Technology》 CAS 2012年第4期815-817,共3页
[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Eva... [Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Evaluation and analysis were made on wettability of wheat straws in the control group and treated groups (chemical and enzyme treatments) by means of measurement of contact angle and calculation of spreading-penetration parameters (K). In addition, we made analysis on surface elements through X-ray photoelectron spectroscopy (XPS). [Result] The re- sults showed that K value of straw treated with sodium hydroxide, hydrogen peroxide and lipase increased by 58.0%, 48.7% and 83.2% compared to that of control group, respectively. The XPS analysis indicated that rapid decrease of silicon content and destruction of wax layer greatly contributed to wettability improvement of wheat straw surface. [Conclusion] The chemical and lipase treatments of wheat straw provided technical support for manufacture of wheat straw particle boand. 展开更多
关键词 Wheat straw WETTABILITY soy protein isolate adhesive X-ray photoelec- tron spectroscopy
下载PDF
Effects of xanthan gum on the rheological properties of soy protein dispersion
19
作者 Chonghao Bi Fei Gao +4 位作者 Yingdan Zhu Fang Ji Yulai Zhang Dong Li Zhigang Huang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第2期208-213,共6页
This study focused on the effects of addition of xanthan gum(XG)on the rheological properties of soy protein isolate(SPI)solution.Three types of tests(steady shear test,strain sweep test,and frequency sweep test)were ... This study focused on the effects of addition of xanthan gum(XG)on the rheological properties of soy protein isolate(SPI)solution.Three types of tests(steady shear test,strain sweep test,and frequency sweep test)were performed to figure out the influences of shear rate on the viscosity of the SPI-XG hybrid system,the effects of strain variable on the storage modulus of the hybrid system,and the effects of frequency on both the storage modulus and the loss modulus of the hybrid system,respectively.SPI-XG hybrid system showed more obvious shear-thinning properties compared to pure SPI and pure XG solution.Meanwhile,it was found that the critical point of hybrid system was highly related to the XG concentration.XG can postpone the critical point strain amplitude to a higher value,and the addition of XG can enhance the strain resistance of hybrid system.The concentration of XG influenced the viscoelastic frequency dependence of the hybrid system significantly and complicatedly.After the addition of XG,the correlation between G′and frequency changed from negative to positive. 展开更多
关键词 rheological property soy protein isolate(SPI) xanthan gum(XG) temperature frequency independence
原文传递
Fabrication of soy film with in-situ mineralized bioactive glass as a functional food for bone health
20
作者 Manjot Kaur Deenan Santhiya 《Food Bioscience》 SCIE 2022年第3期1301-1311,共11页
Delivery of nutrients through the oral route is considered to be the most admissible and preferred path as it follows the same natural process of food consumption in the body.To provide nutrition to the bone for overa... Delivery of nutrients through the oral route is considered to be the most admissible and preferred path as it follows the same natural process of food consumption in the body.To provide nutrition to the bone for overall good bone health,the present work aimed to fabricate soy films as a functional food for bone nutrition.The film formed was fortified with an in-situ mineralized bioactive glass (BG) network containing essential minerals required for good bone health.Also,vitamin K1 was supplemented into the films.Nutritional analysis depicted that the films are a rich source of protein containing about 67% of protein per 100 g having energy calories of 330 Kcal/100 g and essential micronutrients required for bones.The rheological studies depict viscoelastic hydrogel film-like properties of the functional soy-based film.The tensile strength of the said film is about 3.46 ± 0.17 MPa.The in-situ mineralization of the BG network in the soy protein matrix is responsible for the increased tensile strength and swelling properties of the functional film.The presence of essential oils in the film imparts antimicrobial properties to the film.Hence these soy films can be served as nutritional functional food having antimicrobial activity. 展开更多
关键词 soy protein isolate Bone nourishment Functional food Vitamin K1 Antimicrobial film Bioactive glass
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部