Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explo...Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.展开更多
Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as spac...Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.展开更多
In May 2018,the second phase of the Strategic Priority Program on Space Science(SPP II)was officially approved by the Chinese Academy of Sciences,in view of the significant scientific achievements of the first phase o...In May 2018,the second phase of the Strategic Priority Program on Space Science(SPP II)was officially approved by the Chinese Academy of Sciences,in view of the significant scientific achievements of the first phase of the Strategic Priority Program on Space Science(SPP I)which includes 4 space science missions:the Dark Matter Particle Explorer(DAMPE),ShiJian-10(SJ-10),Quantum Experiments at Space Scale(QUESS)and Hard X-ray Modulation Telescope(HXMT).Aiming to address fundamental scientific questions,SPP II focuses on two major themes:How the universe and life originate and evolve and What is the relationship between the solar system and human beings.In areas that Chinese scientists have advantages,new space science missions including Graviational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),the Advanced space-based Solar Observatory(ASO-S),the Einstein Probe(EP),and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)have been approved in the framework of SPP II.This paper presents the research highlights of the SPP I,introduces the recent progress of SPP II,and puts forward the prospects for future development.展开更多
The Strategic Priority Program(SPP)on Space Science,which is under the leadership of the Chinese Academy of Sciences(CAS),has established China’s space science satellite series from scratch.A number of major scientif...The Strategic Priority Program(SPP)on Space Science,which is under the leadership of the Chinese Academy of Sciences(CAS),has established China’s space science satellite series from scratch.A number of major scientific achievements have been made by the first phase of the Program(SPPⅠ),while SPPⅡhas been currently being implemented.The future development of space science needs urgent top-level planning and advanced layout to clarify the overall goal and investment portfolio from 2025 to 2030.We will briefly introduce the initiative and possible space science missions of SPPⅢ,including the preparatory work which already started in July 2021.Following the effective administrative tradition since SPPⅠ,National Space Science Center(NSSC,CAS)is responsible for the whole procedure,including soliciting,assessment,and implementation of SPPⅢ.Brief information on the 13 candidate missions will be described,including missions in the fields of astronomy&astrophysics,exoplanets,heliophysics and planetary&Earth science,respectively.展开更多
With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Rece...With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Recently, liquid metals, as a kind of newly emerging functional material, are attracting various attention and many breakthroughs have been made on earth. Such a scientific trend also suggests promising approaches for solving those extreme challenges in space environment. To fulfill the increasing needs thus involved, this article is dedicated to systematically introducing liquid metal material and its related disciplines into space science and technology. Firstly, existing application of liquid metal cooling for space nuclear power was summarized. Then, some potential space practices were tentatively put forward, such as liquid metal thermal interface medium,liquid metal phase change material, liquid metal convection cooling, metal alloy thermal storage, liquid metal electromagnetic shielding and liquid metal electronic printing. Fundamental as well as practical issues that would differ with earth were interpreted. Finally, potential liquid metal space experiments were proposed to investigate the liquid metal hydrodynamic characteristic, wettability and phase change mechanism in space physical environment. Overall, liquid metal enabled space science and technology investigation will not only help efficiently solve the current and future space technological problems, but also aid to stimulate the advancement of liquid metal space material science.展开更多
In the past two years,China’s space life science has made great progress.Space biomedical and life science programs have carried out ground-based research for the first batch of projects,and are preparing to carry ou...In the past two years,China’s space life science has made great progress.Space biomedical and life science programs have carried out ground-based research for the first batch of projects,and are preparing to carry out space-based experiments along with the construction of China’s space station.And space life science payload of the space station completed the development of positive samples.Thus,with the development of lunar exploration and Mars exploration projects,astrobiology research has also made a lot of basic achievements.On the basis of summarizing the development of space life science in China,this paper mainly introduces the important progress of payload technology and life science research.展开更多
Activities of space materials science research in China have been continuously supported by two main national programs.One is the China Space Station(CSS)program since 1992,and the other is the Strategic Priority Prog...Activities of space materials science research in China have been continuously supported by two main national programs.One is the China Space Station(CSS)program since 1992,and the other is the Strategic Priority Program(SPP)on Space Science since 2011.In CSS plan in 2019,eleven space materials science experimental projects were officially approved for execution during the construction of the space station.In the SPP Phase Ⅱ launched in 2018,seven pre-research projects are deployed as the first batch in 2018,and one concept study project in 2019.These pre-research projects will be cultivated as candidates for future selection as space experiment projects on the recovery of scientific experimental satellites in the future.A new apparatus of electrostatic levitation system for ground-based research of space materials science and rapid solidification research has been developed under the support of the National Natural Science Foundation of China.In order to promote domestic academic activities and to enhance the advancement of space materials science in China,the Space Materials Science and Technology Division belong to the Chinese Materials Research Society was established in 2019.We also organized scientists to write five review papers on space materials science as a special topic published in the journal Scientia Sinica to provide valuable scientific and technical references for Chinese researchers.展开更多
With the further advancement of China’s major manned spaceflight project,the national space laboratory was successfully built.China has also made considerable progress and breakthroughs in the field of space life sci...With the further advancement of China’s major manned spaceflight project,the national space laboratory was successfully built.China has also made considerable progress and breakthroughs in the field of space life sciences.This paper reviews the related biological effects under space flight conditions,mainly including epigenetic effects,skeleton remodeling and peripheral body fluid circulation effects,as well as the research and application of space life science related biotechnology in the field of microbial culture and biological regeneration life support system.展开更多
In this paper,the main research work and related reports of materials science research in China’s space technology field during 2020-2022 are summarized.This paper covers Materials Sciences in Space Environment,Mater...In this paper,the main research work and related reports of materials science research in China’s space technology field during 2020-2022 are summarized.This paper covers Materials Sciences in Space Environment,Materials Sciences for Space Environment,Materials Behavior in Space Environment and Space experimental hardware for material investigation.With the rapid development of China’s space industry,more scientists will be involved in materials science,space technology and earth science researches.In the future,a series of disciplines such as space science,machinery,artificial intelligence,digital twin and big data will be further integrated with materials science,and space materials will also usher in new development opportunities.展开更多
This chapter reports the recent progress on the space astronomy missions of China,including the following missions:currently operating in orbit,e.g.,DAMPE,Insight-HXMT,GECAM,Polar Light,GRID and Lobster-eye X-ray Sate...This chapter reports the recent progress on the space astronomy missions of China,including the following missions:currently operating in orbit,e.g.,DAMPE,Insight-HXMT,GECAM,Polar Light,GRID and Lobster-eye X-ray Satellite;approved and under development for launch in the next a couple of years,e.g.,SVOM and EP;planned experiments to be onboard China’s Space Station in the next several years,e.g.,CSST,HERD,POLAR-2,DIXE and Ly RIC;candidate missions that have passed the first round of review of Strategy Priority Program on space science(Ⅲ)of the Chinese Academy of Sciences,e.g.,eXTP,DAMPE-2,Earth 2.0,DSL and CHES.展开更多
The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfull...The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.展开更多
Earth Science from Space is an interdisciplinary discipline that studies the interactions,mechanisms,and evolution of the Earth system through space observation.In China,the national medium-to long-term civilian space...Earth Science from Space is an interdisciplinary discipline that studies the interactions,mechanisms,and evolution of the Earth system through space observation.In China,the national medium-to long-term civilian space infrastructure development plan and the space-science pilot project from the Chinese Academy of Sciences are two programs associated with advancing the Earth science from space.This paper reports recent scientific findings,developments and the status of the six missions.It is organized as the following sections:Introduction,two satellite missions that are already in orbit—the TanSat-1 for atmospheric COand the LuTan-1 for global surface deformation,a Terrestrial Ecosystem Carbon Inventory Satellite to be launched in 2022,and three missions that passed the PhaseⅡstudy and planned for near future—the Ocean Surface Current multiscale Observation,the Terrestrial Water Resources Satellite.Climate and Atmospheric Components Exploring Satellites(CACES),followed by the conclusion.展开更多
SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satelli...SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground.展开更多
Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in...Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications.展开更多
The amount of waste heat in a space facility became larger, because of increase in the space platform size and its power consumption. It requires development of high-performance space thermal management systems handli...The amount of waste heat in a space facility became larger, because of increase in the space platform size and its power consumption. It requires development of high-performance space thermal management systems handling a large amount of waste. Boiling two-phase flow could become powerful means for this system because a boiling and condensation system is one of the most efficient modes of heat transfer due to phase change (liquid-vapor). However, gravity effects on boiling two-phase flow phenomena and the corresponding heat transfer characteristics are not clear. Therefore, we prepare the experiments of boiling two-phase flow utilizing a long-term microgravity environment onboard a Japanese Experimental Module "KIBO" in the International Space Station (ISS) as one of the JAXA official projects. In this paper, recent progress of the preparation for the project is reported.展开更多
Department of Physics, Faculty of Natural Science and Technology, Tay Nguyen university has collaborated with Stanford Solar Center of Stanford university on Space Weather monitor project. We have developed the TNU-Su...Department of Physics, Faculty of Natural Science and Technology, Tay Nguyen university has collaborated with Stanford Solar Center of Stanford university on Space Weather monitor project. We have developed the TNU-SuperSID teaching module which has three main parts: antenna, preamplifier and data logger. This module can detect the variation of Very Low Frequency (VLF, 3 - 30 kHz) signals during sunrise and sunset transition, and sudden ionospheric disturbance due to solar flares. In other word, the behavior of the Earth's lower ionosphere corresponding the solar activities is understood by using VLF technique. Our project helps undergraduate students who are learning the astrophysics and space physics to enhance their knowledge in space science and their technical skills with real experiments. Through the participant in this project, students can also be gained their skills such as communication, working in team, processing data, etc.展开更多
Since the early days of manned spaceflight, hazardous effects of the space environment on living organisms have been disputed. With the continuous manning of the International Space Station, the planned Chinese space ...Since the early days of manned spaceflight, hazardous effects of the space environment on living organisms have been disputed. With the continuous manning of the International Space Station, the planned Chinese space station, and renewed interest in returning to the Moon and sending manned flights to Mars, identifying and addressing the potential outcomes of long-term space exposures is critically important.展开更多
An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of va...An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.展开更多
Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrode...Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrodes.The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened.Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force.The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability.As a measure characterizing the intrinsic levitation ability of various materials,the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.展开更多
基金Supported by Consultation and Evaluation Program on Academic Divisions of the Chinese Academy of Sciences(2022-DX02-B-007)。
文摘Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.
文摘Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.
基金Supported by the Strategic Priority Program on Space Science of the Chinese Academy of Sciences(XDA15000000)。
文摘In May 2018,the second phase of the Strategic Priority Program on Space Science(SPP II)was officially approved by the Chinese Academy of Sciences,in view of the significant scientific achievements of the first phase of the Strategic Priority Program on Space Science(SPP I)which includes 4 space science missions:the Dark Matter Particle Explorer(DAMPE),ShiJian-10(SJ-10),Quantum Experiments at Space Scale(QUESS)and Hard X-ray Modulation Telescope(HXMT).Aiming to address fundamental scientific questions,SPP II focuses on two major themes:How the universe and life originate and evolve and What is the relationship between the solar system and human beings.In areas that Chinese scientists have advantages,new space science missions including Graviational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),the Advanced space-based Solar Observatory(ASO-S),the Einstein Probe(EP),and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)have been approved in the framework of SPP II.This paper presents the research highlights of the SPP I,introduces the recent progress of SPP II,and puts forward the prospects for future development.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15060102)。
文摘The Strategic Priority Program(SPP)on Space Science,which is under the leadership of the Chinese Academy of Sciences(CAS),has established China’s space science satellite series from scratch.A number of major scientific achievements have been made by the first phase of the Program(SPPⅠ),while SPPⅡhas been currently being implemented.The future development of space science needs urgent top-level planning and advanced layout to clarify the overall goal and investment portfolio from 2025 to 2030.We will briefly introduce the initiative and possible space science missions of SPPⅢ,including the preparatory work which already started in July 2021.Following the effective administrative tradition since SPPⅠ,National Space Science Center(NSSC,CAS)is responsible for the whole procedure,including soliciting,assessment,and implementation of SPPⅢ.Brief information on the 13 candidate missions will be described,including missions in the fields of astronomy&astrophysics,exoplanets,heliophysics and planetary&Earth science,respectively.
基金supported by the Key Project of the National Natural Science Foundation of China (Grant No. 91748206)the Frontier Project of the Chinese Academy of Sciences and Dean’s Research Funding。
文摘With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Recently, liquid metals, as a kind of newly emerging functional material, are attracting various attention and many breakthroughs have been made on earth. Such a scientific trend also suggests promising approaches for solving those extreme challenges in space environment. To fulfill the increasing needs thus involved, this article is dedicated to systematically introducing liquid metal material and its related disciplines into space science and technology. Firstly, existing application of liquid metal cooling for space nuclear power was summarized. Then, some potential space practices were tentatively put forward, such as liquid metal thermal interface medium,liquid metal phase change material, liquid metal convection cooling, metal alloy thermal storage, liquid metal electromagnetic shielding and liquid metal electronic printing. Fundamental as well as practical issues that would differ with earth were interpreted. Finally, potential liquid metal space experiments were proposed to investigate the liquid metal hydrodynamic characteristic, wettability and phase change mechanism in space physical environment. Overall, liquid metal enabled space science and technology investigation will not only help efficiently solve the current and future space technological problems, but also aid to stimulate the advancement of liquid metal space material science.
基金Supported by Space Medical Experiment Project of China Manned Space Program(HYZHXM02003)。
文摘In the past two years,China’s space life science has made great progress.Space biomedical and life science programs have carried out ground-based research for the first batch of projects,and are preparing to carry out space-based experiments along with the construction of China’s space station.And space life science payload of the space station completed the development of positive samples.Thus,with the development of lunar exploration and Mars exploration projects,astrobiology research has also made a lot of basic achievements.On the basis of summarizing the development of space life science in China,this paper mainly introduces the important progress of payload technology and life science research.
基金Supports by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(XDA15013200,XDA15013700,XDA15013800,XDA15051200)the China’s Manned Space Station Project(TGJZ800-2-RW024)and the National Natural Science Foundation of China(51327901)。
文摘Activities of space materials science research in China have been continuously supported by two main national programs.One is the China Space Station(CSS)program since 1992,and the other is the Strategic Priority Program(SPP)on Space Science since 2011.In CSS plan in 2019,eleven space materials science experimental projects were officially approved for execution during the construction of the space station.In the SPP Phase Ⅱ launched in 2018,seven pre-research projects are deployed as the first batch in 2018,and one concept study project in 2019.These pre-research projects will be cultivated as candidates for future selection as space experiment projects on the recovery of scientific experimental satellites in the future.A new apparatus of electrostatic levitation system for ground-based research of space materials science and rapid solidification research has been developed under the support of the National Natural Science Foundation of China.In order to promote domestic academic activities and to enhance the advancement of space materials science in China,the Space Materials Science and Technology Division belong to the Chinese Materials Research Society was established in 2019.We also organized scientists to write five review papers on space materials science as a special topic published in the journal Scientia Sinica to provide valuable scientific and technical references for Chinese researchers.
文摘With the further advancement of China’s major manned spaceflight project,the national space laboratory was successfully built.China has also made considerable progress and breakthroughs in the field of space life sciences.This paper reviews the related biological effects under space flight conditions,mainly including epigenetic effects,skeleton remodeling and peripheral body fluid circulation effects,as well as the research and application of space life science related biotechnology in the field of microbial culture and biological regeneration life support system.
基金Supported by the National Natural Science Fundation of China(51873146)。
文摘In this paper,the main research work and related reports of materials science research in China’s space technology field during 2020-2022 are summarized.This paper covers Materials Sciences in Space Environment,Materials Sciences for Space Environment,Materials Behavior in Space Environment and Space experimental hardware for material investigation.With the rapid development of China’s space industry,more scientists will be involved in materials science,space technology and earth science researches.In the future,a series of disciplines such as space science,machinery,artificial intelligence,digital twin and big data will be further integrated with materials science,and space materials will also usher in new development opportunities.
文摘This chapter reports the recent progress on the space astronomy missions of China,including the following missions:currently operating in orbit,e.g.,DAMPE,Insight-HXMT,GECAM,Polar Light,GRID and Lobster-eye X-ray Satellite;approved and under development for launch in the next a couple of years,e.g.,SVOM and EP;planned experiments to be onboard China’s Space Station in the next several years,e.g.,CSST,HERD,POLAR-2,DIXE and Ly RIC;candidate missions that have passed the first round of review of Strategy Priority Program on space science(Ⅲ)of the Chinese Academy of Sciences,e.g.,eXTP,DAMPE-2,Earth 2.0,DSL and CHES.
文摘The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.
文摘Earth Science from Space is an interdisciplinary discipline that studies the interactions,mechanisms,and evolution of the Earth system through space observation.In China,the national medium-to long-term civilian space infrastructure development plan and the space-science pilot project from the Chinese Academy of Sciences are two programs associated with advancing the Earth science from space.This paper reports recent scientific findings,developments and the status of the six missions.It is organized as the following sections:Introduction,two satellite missions that are already in orbit—the TanSat-1 for atmospheric COand the LuTan-1 for global surface deformation,a Terrestrial Ecosystem Carbon Inventory Satellite to be launched in 2022,and three missions that passed the PhaseⅡstudy and planned for near future—the Ocean Surface Current multiscale Observation,the Terrestrial Water Resources Satellite.Climate and Atmospheric Components Exploring Satellites(CACES),followed by the conclusion.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA04020000)United Funding from National Natural Science Foundation of China and Chinese Academy of Sciences。
文摘SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground.
文摘Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications.
文摘The amount of waste heat in a space facility became larger, because of increase in the space platform size and its power consumption. It requires development of high-performance space thermal management systems handling a large amount of waste. Boiling two-phase flow could become powerful means for this system because a boiling and condensation system is one of the most efficient modes of heat transfer due to phase change (liquid-vapor). However, gravity effects on boiling two-phase flow phenomena and the corresponding heat transfer characteristics are not clear. Therefore, we prepare the experiments of boiling two-phase flow utilizing a long-term microgravity environment onboard a Japanese Experimental Module "KIBO" in the International Space Station (ISS) as one of the JAXA official projects. In this paper, recent progress of the preparation for the project is reported.
文摘Department of Physics, Faculty of Natural Science and Technology, Tay Nguyen university has collaborated with Stanford Solar Center of Stanford university on Space Weather monitor project. We have developed the TNU-SuperSID teaching module which has three main parts: antenna, preamplifier and data logger. This module can detect the variation of Very Low Frequency (VLF, 3 - 30 kHz) signals during sunrise and sunset transition, and sudden ionospheric disturbance due to solar flares. In other word, the behavior of the Earth's lower ionosphere corresponding the solar activities is understood by using VLF technique. Our project helps undergraduate students who are learning the astrophysics and space physics to enhance their knowledge in space science and their technical skills with real experiments. Through the participant in this project, students can also be gained their skills such as communication, working in team, processing data, etc.
文摘Since the early days of manned spaceflight, hazardous effects of the space environment on living organisms have been disputed. With the continuous manning of the International Space Station, the planned Chinese space station, and renewed interest in returning to the Moon and sending manned flights to Mars, identifying and addressing the potential outcomes of long-term space exposures is critically important.
基金supported by the National Natural Science Foun-dation of China (Grant Nos. 50121101, 50971103 and 50971105)the Program for New Century Excellent Talents in University
文摘An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 50971103 and 51271150)the Program for New Century Excellent Talentsthe NPU Foundation for Fundamental Research
文摘Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrodes.The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened.Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force.The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability.As a measure characterizing the intrinsic levitation ability of various materials,the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.