文摘针对三维人体姿态估计实际应用场景需求,提出一种基于空洞卷积ResNet模块和稀疏自注意力(Sparse Attention,SA)的轻量化三维人体姿态估计模型DS-Net(Dilated Sparse Attention Network)。首先,以单目、单阶段、多个三维人的回归网络(Monocular,One-stage,Regression of Multiple 3D People,ROMP)为基础姿态估计模型,并替换支路中基础ResNet模块的卷积为空洞卷积,在不降低精度的前提下减少模型参数量;其次,在支路中嵌入Sparse Attention,加强上下文理解能力以提高精度;最后,经过7个数据集训练和3DPW数据集测试,验证模型可行性。经实验验证,提出的DS-Net总参数量减少53.8%;在三维人体姿态估计任务中与ROMP相比,MPJPE和PA-MPJPE分别降低1.8%和2.9%,满足姿态估计实际应用场景需求。