Downward Looking Sparse Linear Array Three Dimensional SAR(DLSLA 3D SAR) is an important form of 3D SAR imaging, which has a widespread application field. Since its practical equivalent phase centers are usually distr...Downward Looking Sparse Linear Array Three Dimensional SAR(DLSLA 3D SAR) is an important form of 3D SAR imaging, which has a widespread application field. Since its practical equivalent phase centers are usually distributed sparsely and nonuniformly, traditional 3D SAR algorithms suffer from low resolution and high sidelobes in cross-track dimension. To deal with this problem, this paper introduces a method based on back-projection and convex optimization to achieve 3D high accuracy imaging reconstruction. Compared with traditional SAR algorithms, the proposed method sufficiently utilizes the sparsity of the 3D SAR imaging scene and can achieve lower sidelobes and higher resolution in cross-track dimension. In the simulated experiments, the reconstructed results of both simple and complex imaging scene verify that the proposed method outperforms 3D back-projection algorithm and shows satisfying cross-track dimensional resolution and good robustness to noise.展开更多
基金Supported by the National Natural Science Foundation of China General Programs(Nos.61072112,61372186)the National Natural Science Foundation of China Key Program(No.60890071)
文摘Downward Looking Sparse Linear Array Three Dimensional SAR(DLSLA 3D SAR) is an important form of 3D SAR imaging, which has a widespread application field. Since its practical equivalent phase centers are usually distributed sparsely and nonuniformly, traditional 3D SAR algorithms suffer from low resolution and high sidelobes in cross-track dimension. To deal with this problem, this paper introduces a method based on back-projection and convex optimization to achieve 3D high accuracy imaging reconstruction. Compared with traditional SAR algorithms, the proposed method sufficiently utilizes the sparsity of the 3D SAR imaging scene and can achieve lower sidelobes and higher resolution in cross-track dimension. In the simulated experiments, the reconstructed results of both simple and complex imaging scene verify that the proposed method outperforms 3D back-projection algorithm and shows satisfying cross-track dimensional resolution and good robustness to noise.