期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
DIRECTION-OF-ARRIVAL ESTIMATION IN THE PRESENCE OF MUTUAL COUPLING BASED ON JOINT SPARSE RECOVERY 被引量:2
1
作者 Wang Libin Cui Chen 《Journal of Electronics(China)》 2012年第5期408-414,共7页
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of c... A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method. 展开更多
关键词 Direction-Of-Arrival (DOA) Uniform Linear Array (ULA) Mutual coupling Joint sparse recovery
下载PDF
DOA estimation method for wideband signals by sparse recovery in frequency domain 被引量:1
2
作者 Jiaqi Zhen Zhifang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期871-878,共8页
The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem,... The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem, a novel method for wideband signals by sparse recovery in the frequency domain is proposed. The optimization functions are found and solved by the received data at every frequency, on this basis, the sparse support set is obtained, then the direction of arrival (DOA) is acquired by integrating the information of all frequency bins, and the initial signal can also be recovered. This method avoids the error caused by sparse recovery methods based on grid division, and the degree of freedom is also expanded by array transformation, especially it has a preferable performance under the circumstances of a small number of snapshots and a low signal to noise ratio (SNR). 展开更多
关键词 SUPER-RESOLUTION direction of arrival sparse recovery frequency domain wideband signals
下载PDF
Sparse Recovery of Linear Time-Varying Channel in OFDM System
3
作者 Jiansheng Hu Zuxun Song Shuxia Guo 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期245-251,共7页
In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multipl... In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multiplexing(OFDM)system is proposed.Firstly,based on the compressive sensing theory,the average of the channel taps over one symbol duration in the LTV channel model is estimated.Secondly,in order to deal with the inter-carrier interference(ICI),the group-pilot design criterion is used based on the minimization of mutual coherence of the measurement.Finally,an efficient pilot pattern optimization algorithm is proposed by a dual layer loops iteration.The simulation results show that the new method uses less pilots,has a smaller bit error ratio(BER),and greater ability to deal with Doppler frequency shift than the traditional method does. 展开更多
关键词 orthogonal frequency division multiplexing OFDM linear time-varying (LTV) channel sparse recovery pilots design
下载PDF
A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES
4
作者 Haifeng LI Jing ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第3期941-956,共16页
A greedy algorithm used for the recovery of sparse signals,multiple orthogonal least squares(MOLS)have recently attracted quite a big of attention.In this paper,we consider the number of iterations required for the MO... A greedy algorithm used for the recovery of sparse signals,multiple orthogonal least squares(MOLS)have recently attracted quite a big of attention.In this paper,we consider the number of iterations required for the MOLS algorithm for recovery of a K-sparse signal x∈R^(n).We show that MOLS provides stable reconstruction of all K-sparse signals x from y=Ax+w in|6K/ M|iterations when the matrix A satisfies the restricted isometry property(RIP)with isometry constantδ_(7K)≤0.094.Compared with the existing results,our sufficient condition is not related to the sparsity level K. 展开更多
关键词 sparse signal recovery multiple orthogonal least squares(MOLS) sufficient condition restricted isometry property(RIP)
下载PDF
SPARSE RECOVERY BASED ON THE GENERALIZED ERROR FUNCTION
5
作者 Zhiyong Zhou 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期679-704,共26页
In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both cons... In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both constrained and unconstrained models,the theoretical analysis results in terms of the null space property,the spherical section property and the restricted invertibility factor are established.The practical algorithms via both the iteratively reweighted■_(1)and the difference of convex functions algorithms are presented.Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances.Its practical application in magnetic resonance imaging(MRI)reconstruction is also investigated. 展开更多
关键词 sparse recovery Generalized error function Nonconvex regularization Itera-tive reweighted Li Difference of convex functions algorithms
原文传递
A New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem
6
作者 Nguyen The VINH Pham Thi HOAI +1 位作者 Le Anh DUNG Yeol Je CHO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第12期2489-2506,共18页
In this paper,by combining the inertial technique and the gradient descent method with Polyak's stepsizes,we propose a novel inertial self-adaptive gradient algorithm to solve the split feasi-bility problem in Hil... In this paper,by combining the inertial technique and the gradient descent method with Polyak's stepsizes,we propose a novel inertial self-adaptive gradient algorithm to solve the split feasi-bility problem in Hilbert spaces and prove some strong and weak convergence theorems of our method under standard assumptions.We examine the performance of our method on the sparse recovery prob-lem beside an example in an infinite dimensional Hilbert space with synthetic data and give some numerical results to show the potential applicability of the proposed method and comparisons with related methods emphasize it further. 展开更多
关键词 Split feasibility problem CQ algorithm Hilbert space sparse recovery problem
原文传递
Iterative subspace matching pursuit for joint sparse recovery
7
作者 Shu Feng Zhang Linghua Ding Yin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第2期26-35,共10页
Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the ... Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the focus is placed on the rank defective case where the number of measurements is limited or the signals are significantly correlated with each other.First,an iterative atom refinement process is adopted to estimate part of the atoms of the support set.Subsequently,the above atoms along with the measurements are used to estimate the remaining atoms.The estimation criteria for atoms are based on the principle of minimum subspace distance.Extensive numerical experiments were performed in noiseless and noisy scenarios,and results reveal that iterative subspace matching pursuit(ISMP)outperforms other existing algorithms for JSR. 展开更多
关键词 joint sparse recovery(JSR) multiple measurement vector(MMV) support set estimation compressed sensing(CS)
原文传递
Convex Relaxation Algorithm for a Structured Simultaneous Low-Rank and Sparse Recovery Problem 被引量:1
8
作者 Le Han Xiao-Lan Liu 《Journal of the Operations Research Society of China》 EI CSCD 2015年第3期363-379,共17页
This paper is concerned with the structured simultaneous low-rank and sparse recovery,which can be formulated as the rank and zero-norm regularized least squares problem with a hard constraint diag(■)=0.For this clas... This paper is concerned with the structured simultaneous low-rank and sparse recovery,which can be formulated as the rank and zero-norm regularized least squares problem with a hard constraint diag(■)=0.For this class of NP-hard problems,we propose a convex relaxation algorithm by applying the accelerated proximal gradient method to a convex relaxation model,which is yielded by the smoothed nuclear norm and the weighted l1-norm regularized least squares problem.A theoretical guarantee is provided by establishing the error bounds of the iterates to the true solution under mild restricted strong convexity conditions.To the best of our knowledge,this work is the first one to characterize the error bound of the iterates of the algorithm to the true solution.Finally,numerical results are reported for some random test problems and synthetic data in subspace clustering to verify the efficiency of the proposed convex relaxation algorithm. 展开更多
关键词 Simultaneous low-rank and sparse recovery Convex relaxation Error bound
原文传递
PIECEWISE SPARSE RECOVERY VIA PIECEWISE INVERSE SCALE SPACE ALGORITHM WITH DELETION RULE
9
作者 Yijun Zhong Chongjun Li 《Journal of Computational Mathematics》 SCIE CSCD 2020年第2期375-394,共20页
In some applications,there are signals with piecewise structure to be recovered.In this paper,we propose a piecewise_ISS(P_ISS)method which aims to preserve the piecewise sparse structure(or the small-scaled entries)o... In some applications,there are signals with piecewise structure to be recovered.In this paper,we propose a piecewise_ISS(P_ISS)method which aims to preserve the piecewise sparse structure(or the small-scaled entries)of piecewise signals.In order to avoid selecting redundant false small-scaled elements,we also implement the piecewise_ISS algorithm in parallel and distributed manners equipped with a deletion rule.Numerical experiments indicate that compared with alSS,the P_ISS algorithm is more effective and robust for piecewise sparse recovery. 展开更多
关键词 Inverse scale space Piecewise sparse sparse recovery Small-scaled entries
原文传递
New regularization method and iteratively reweighted algorithm for sparse vector recovery 被引量:1
10
作者 Wei ZHU Hui ZHANG Lizhi CHENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期157-172,共16页
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design... Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm. 展开更多
关键词 regularization method iteratively reweighted algorithm(IR-algorithm) sparse vector recovery
下载PDF
Sparse recovery method for far-field and near-field sources localization using oblique projection
11
作者 WANG Bo ZHAO Yan-ping LIU Juan-juan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2013年第3期90-96,共7页
In this paper, we propose a novel source localization method to estimate parameters of arbitrary field sources, which may lie in near-field region or far-field region of array aperture. The proposed method primarily c... In this paper, we propose a novel source localization method to estimate parameters of arbitrary field sources, which may lie in near-field region or far-field region of array aperture. The proposed method primarily constructs two special spatial-temporal covariance matrixes which can avoid the array aperture loss, and then estimates the frequencies of signals to obtain the oblique projection matrixes. By using the oblique projection technique, the covariance matrixes can be transformed into several data matrixes which only contain single source information, respectively. At last, based on the sparse signal recovery method, these data matrixes are utilized to solve the source localization problem. Compared with the existing typical source localization algorithms, the proposed method improves the estimation accuracy, and provides higher angle resolution for closely spaced sources scenario. Simulation results are given to demonstrate the performance of the proposed algorithm. 展开更多
关键词 array signal processing NEAR-FIELD FAR-FIELD sparse signal recovery oblique projection
原文传递
Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems
12
作者 Sina Mortazavi Reza Hosseini 《Journal of Electrical Engineering》 2018年第2期124-128,共5页
We consider the problem of constructing one sparse signal from a few measurements. This problem has been extensively addressed in the literature, providing many sub-optimal methods that assure convergence to a locally... We consider the problem of constructing one sparse signal from a few measurements. This problem has been extensively addressed in the literature, providing many sub-optimal methods that assure convergence to a locally optimal solution under specific conditions. There are a few measurements associated with every signal, where the size of each measurement vector is less than the sparse signal's size. All of the sparse signals have the same unknown support. We generalize an existing algorithm for the recovery of one sparse signal from a single measurement to this problem and analyze its performances through simulations. We also compare the construction performance with other existing algorithms. Finally, the proposed method also shows advantages over the OMP (Orthogonal Matching Pursuit) algorithm in terms of the computational complexity. 展开更多
关键词 sparse signal recovery iterative methods multiple measurements
下载PDF
Pulse Signal Recovery Method Based on Sparse Representation
13
作者 Jiangmei Zhang Haibo Ji +2 位作者 Qingping Zhu Hongsen He Kunpeng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期161-168,共8页
Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conven... Pulse signal recovery is to extract useful amplitude and time information from the pulse signal contaminated by noise. It is a great challenge to precisely recover the pulse signal in loud background noise. The conventional approaches,which are mostly based on the distribution of the pulse energy spectrum,do not well determine the locations and shapes of the pulses. In this paper,we propose a time domain method to reconstruct pulse signals. In the proposed approach,a sparse representation model is established to deal with the issue of the pulse signal recovery under noise conditions. The corresponding problem based on the sparse optimization model is solved by a matching pursuit algorithm. Simulations and experiments validate the effectiveness of the proposed approach on pulse signal recovery. 展开更多
关键词 signal recovery pulse signal sparse representation matching pursuit
下载PDF
Robust signal recovery algorithm for structured perturbation compressive sensing 被引量:2
14
作者 Youhua Wang Jianqiu Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期319-325,共7页
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical... It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones. 展开更多
关键词 sparse signal recovery compressive sensing(CS) structured matrix perturbation
下载PDF
REQUIRED NUMBER OF ITERATIONS FOR SPARSE SIGNAL RECOVERY VIA ORTHOGONAL LEAST SQUARES
15
作者 Haifeng Li Jing Zhang +1 位作者 Jinming Wen Dongfang Li 《Journal of Computational Mathematics》 SCIE CSCD 2023年第1期1-17,共17页
In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selec... In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selects at each step the column that results in the most significant decrease in the residual power,is one of the most popular sparse recovery algorithms.In this paper,we investigate the number of iterations required for recovering x with the OLS algorithm.We show that OLS provides a stable reconstruction of all K-sparse signals x in[2.8K]iterations provided thatΦsatisfies the restricted isometry property(RIP).Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013. 展开更多
关键词 sparse signal recovery Orthogonal least squares(OLS) Restricted isometry property(RIP)
原文传递
Near-field 3D imaging approach combining MJSR and FGG-NUFFT 被引量:3
16
作者 WANG Shuzhen FANG Yang +2 位作者 ZHANG Jin’gang LUO Mingshi LI Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1096-1109,共14页
A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of t... A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2). 展开更多
关键词 interference imaging joint sparse recovery compressed sensing(CS) matching filtering(MF) fast Gaussian gridding nonuniform fast Fourier transform(NUFFT) near-field 3D imaging
下载PDF
Sparse Signal Recovery via Exponential Metric Approximation
17
作者 Jian Pan Jun Tang Wei Zhu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第1期104-111,共8页
Sparse signal recovery problems are common in parameter estimation, image processing, pattern recognition, and so on. The problem of recovering a sparse signal representation from a signal dictionary might be classifi... Sparse signal recovery problems are common in parameter estimation, image processing, pattern recognition, and so on. The problem of recovering a sparse signal representation from a signal dictionary might be classified as a linear constraint l_0-quasinorm minimization problem, which is thought to be a Non-deterministic Polynomial-time(NP)-hard problem. Although several approximation methods have been developed to solve this problem via convex relaxation, researchers find the nonconvex methods to be more efficient in solving sparse recovery problems than convex methods. In this paper a nonconvex Exponential Metric Approximation(EMA)method is proposed to solve the sparse signal recovery problem. Our proposed EMA method aims to minimize a nonconvex negative exponential metric function to attain the sparse approximation and, with proper transformation,solve the problem via Difference Convex(DC) programming. Numerical simulations show that exponential metric function approximation yields better sparse recovery performance than other methods, and our proposed EMA-DC method is an efficient way to recover the sparse signals that are buried in noise. 展开更多
关键词 sparse recovery exponential metric approximation sparsity tolerance DC optimization signal-to-noiseratio
原文传递
DOA estimation in unknown colored noise using covariance differencing and sparse signal recovery 被引量:1
18
作者 TIAN Ye SUN Xiao-ying QIN Yu-di 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2014年第3期106-112,共7页
A direction-of-arrival (DOA) estimation algorithm is presented based on covariance differencing and sparse signal recovery, in which the desired signal is embedded in noise with unknown covariance. The key point of ... A direction-of-arrival (DOA) estimation algorithm is presented based on covariance differencing and sparse signal recovery, in which the desired signal is embedded in noise with unknown covariance. The key point of the algorithm is to eliminate the noise component by forming the difference of original and transformed covariance matrix, as well as cast the DOA estimation considered as a sparse signal recovery problem. Concerning accuracy and complexity of estimation, the authors take a vectorization operation on difference matrix, and further enforce sparsity by reweighted l1-norm penalty. We utilize data-validation to select the regularization parameter properly. Meanwhile, a kind of symmetric grid division and refinement strategy is introduced to make the proposed algorithm effective and also to mitigate the effects of limiting estimates to a grid of spatial locations. Compared with the covariance-differencing-based multiple signal classification (MUSIC) method, the proposed is of salient features, including increased resolution, improved robustness to colored noise, distinguishing the false peaks easily, but with no requiring of prior knowledge of the number of sources. 展开更多
关键词 DIRECTION-OF-ARRIVAL covariance differencing sparse signal recovery reweighted 21-norm penalty unknown covariance
原文传递
THE EXACT RECOVERY OF SPARSE SIGNALS VIA ORTHOGONAL MATCHING PURSUIT
19
作者 Anping Liao Jiaxin Xie +1 位作者 Xiaobo Yang PengWang 《Journal of Computational Mathematics》 SCIE CSCD 2016年第1期70-86,共17页
This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exa... This paper aims to investigate sufficient conditions for the recovery of sparse signals via the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm, and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for recovering the support of k-sparse signal is also presented. Generally, the computation for the restricted isometry constant (RIC) in these sufficient conditions is typically difficult, therefore we provide a new condition which is not only computable but also sufficient for the exact recovery of all k-sparse signals. 展开更多
关键词 Compressed sensing sparse signal recovery Restricted orthogonality constant(ROC) Restricted isometry constant (RIC) Orthogonal matching pursuit (OMP).
原文传递
A Relaxed-PPA Contraction Method for Sparse Signal Recovery
20
作者 符小玲 王祥丰 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期141-146,共6页
Sparse signal recovery is a topic of considerable interest,and the literature in this field is already quite immense.Many problems that arise in sparse signal recovery can be generalized as a convex programming with l... Sparse signal recovery is a topic of considerable interest,and the literature in this field is already quite immense.Many problems that arise in sparse signal recovery can be generalized as a convex programming with linear conic constraints.In this paper,we present a new proximal point algorithm(PPA) termed as relaxed-PPA(RPPA) contraction method,for solving this common convex programming.More precisely,we first reformulate the convex programming into an equivalent variational inequality(VI),and then efficiently explore its inner structure.In each step,our method relaxes the VI-subproblem to a tractable one,which can be solved much more efficiently than the original VI.Under mild conditions,the convergence of the proposed method is proved.Experiments with l1 analysis show that RPPA is a computationally efficient algorithm and compares favorably with the recently proposed state-of-the-art algorithms. 展开更多
关键词 sparse signal recovery proximal point algorithm(PPA) convex programming contraction method
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部