期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Single-image night haze removal based on color channel transfer and estimation of spatial variation in atmospheric light
1
作者 Shu-yun Liu Qun Hao +6 位作者 Yu-tong Zhang Feng Gao Hai-ping Song Yu-tong Jiang Ying-sheng Wang Xiao-ying Cui Kun Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期134-151,共18页
The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu... The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method. 展开更多
关键词 Dehazing image captured at night Chromaticity fusion correction Color channel transfer spatial change-based atmospheric light ESTIMATION DehazeNet
下载PDF
Crowdsourcing RTK:a new GNSS positioning framework for building spatial high-resolution atmospheric maps based on massive vehicle GNSS data
2
作者 Hongjin Xu Xingyu Chen +1 位作者 Jikun Ou Yunbin Yuan 《Satellite Navigation》 SCIE EI CSCD 2024年第1期91-108,共18页
High-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution(AR)in precise positioning.However,traditional real-time precise positioning frameworks(i.e.,NR... High-quality spatial atmospheric delay correction information is essential for achieving fast integer ambiguity resolution(AR)in precise positioning.However,traditional real-time precise positioning frameworks(i.e.,NRTK and PPP-RTK)depend on spatial low-resolution atmospheric delay correction through the expensive and sparsely distributed CORS network.This results in limited public appeal.With the mass production of autonomous driving vehicles,more cost-effective and widespread data sources can be explored to create spatial high-resolution atmospheric maps.In this study,we propose a new GNSS positioning framework that relies on dual base stations,massive vehicle GNSS data,and crowdsourced atmospheric delay correction maps(CAM).The map is easily produced and updated by vehicles equipped with GNSS receivers in a crowd-sourced way.Specifically,the map consists of between-station single-differenced ionospheric and tropospheric delays.We introduce the whole framework of CAM initialization for individual vehicles,on-cloud CAM maintenance,and CAM-augmented user-end positioning.The map data are collected and preprocessed in vehicles.Then,the crowdsourced data are uploaded to a cloud server.The massive data from multiple vehicles are merged in the cloud to update the CAM in time.Finally,the CAM will augment the user positioning performance.This framework forms a beneficial cycle where the CAM’s spatial resolution and the user positioning performance mutually improve each other.We validate the performance of the proposed framework in real-world experiments and the applied potency at different spatial scales.We highlight that this framework is a reliable and practical positioning solution that meets the requirements of ubiquitous high-precision positioning. 展开更多
关键词 New GNSS positioning framework spatial high-resolution atmospheric delay correction Crowdsourced atmospheric delay correction maps Crowdsourced ionosphere Crowdsourced troposphere Ubiquitous
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部