Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existen...Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.展开更多
BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method t...BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method to identify CD and ITB with high accuracy,specificity,and speed.AIM To develop a method to identify CD and ITB with high accuracy,specificity,and speed.METHODS A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB.Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis.RESULTS The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm^(-1) and 1234 cm^(-1) bands,and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy,specificity,and sensitivity of 91.84%,92.59%,and 90.90%,respectively,for the differential diagnosis of CD and ITB.CONCLUSION Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level,and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.展开更多
Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties...Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.展开更多
The Marplex Convention was established to prevent the manufacture of unmarked plastic explosives and stipulates that a volatile detection agent must be added at the time of manufacture.However,to-date,laboratory testi...The Marplex Convention was established to prevent the manufacture of unmarked plastic explosives and stipulates that a volatile detection agent must be added at the time of manufacture.However,to-date,laboratory testing remains the internationally accepted practice for identifying and quantifying the taggants stipulated in the Convention.In this project,portable FTIR and Raman instruments were tested for their ability to detect 2,3-dimethyl-2,3-dinitrobutane(DMDNB),the chemical marker incorporated in plastic explosives that are manufactured within Australia.While both FTIR and Raman instruments detected solid DMDNB(98%purity),field analysis of plastic explosives at an Australian Defence establishment showed that both FTIR and Raman spectra were matched the relevant explosive(RDX or PETN),rather than the DMDNB taggant.For all three plastic explosives tested,the concentration of DMDNB was measured by SPME-GC-MS to be between 1.8 and 2%,greater than the minimum 1%concentration stipulated by the Marplex Convention.Additional testing with a plastic explosive analogue confirmed that the minor absorption peaks that would characterize low concentrations of DMDNB were masked by absorption bands from other compounds within the solid.Thus,while both FTIR and Raman spectroscopy are suitable for detection of plastic explosives,neither rely on the presence of DMDNB for detection.It is likely that similar results would be found for other taggants stipulated by the Marplex Convention,given they are also present in concentrations less than 1%.展开更多
In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique a...In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia.展开更多
Traditional Fourier transform infrared(FTIR)spectroscopy has been recognized as a valuable method to characterize and classify kinds of microorganisms.In this study,combined with multivariate statistical analysis,sync...Traditional Fourier transform infrared(FTIR)spectroscopy has been recognized as a valuable method to characterize and classify kinds of microorganisms.In this study,combined with multivariate statistical analysis,synchrotron radiation-based FTIR(SR-FTIR) microspectroscopy was applied to identify and discriminate ten foodborne bacterial strains.Our results show that the whole spectra(3000-900 cm^(-1)) and three subdivided spectral regions(3000-2800,1800-1500 and 1200-900 cm^(-1),representing lipids,proteins and polysaccharides,respectively) can be used to type bacteria.Either the whole spectra or the three subdivided spectra are good for discriminating the bacteria at levels of species and subspecies,but the whole spectra should be given preference at the genus level.The findings demonstrate that SR-FTIR microspectroscopy is a powerful tool to identify and classify foodborne pathogenic bacteria at the genus,species and subspecies level.展开更多
The effects of microwave energy and conventional convective heating on bovine meat were studied in the mid-infrared region by FTIR spectroscopy, to highlight the differences between the two cooking methods. Samples of...The effects of microwave energy and conventional convective heating on bovine meat were studied in the mid-infrared region by FTIR spectroscopy, to highlight the differences between the two cooking methods. Samples of 100 g of bovine breast meat were cooked using three treatments: heating in a conventional electric oven at the temperature of 165°C for 16 min, heating in a microwave oven at 800 W for 95 sec, and heating in the same microwave oven at 650 W for 160 sec. Significant decreases in intensity of vibration bands of CH2 methylene group at 1921 and 1853 cm-1 and of the carbonyl band at 1742 cm-1 were observed after microwave heating with respect to heating in a conventional oven, showing that Maillard reaction occurs partially using microwave oven. Spectral analysis in the amide I region after microwave cooking at 800 W for 95 sec showed that an increase in intensity occurred in the region from 1665 to 1690 cm-1 which can be attributed to β-turns, characteristic of disorder processes in the protein. Further analysis after microwave cooking at 650 W for 160 sec evidenced major increase in intensity of β-turns content and the appearance of significant increases of β-sheet component at 1635 cm-1 and 1695 cm-1 that can be attributed to aggregated β-sheets structures.展开更多
We studied the incorporation of hydrophobic drug Taxol into a solid lipid matrices by FTIR spectroscopy. Lipid arrays containing different molar fractions of the drug were made and deposited on the spectrometer glass ...We studied the incorporation of hydrophobic drug Taxol into a solid lipid matrices by FTIR spectroscopy. Lipid arrays containing different molar fractions of the drug were made and deposited on the spectrometer glass window substrates for obtaining multilayer stacks. The drug induced an alteration of lipid array spacings, indicating the drug-lipid recognition. Using excess amounts of Taxol provide information on extrapolations on its cellular solubility in biomembranes. The data obtained could be used further for developing novel anticancer drug formulations, as well as for elucidating its novel cellular pharmacological targets.展开更多
Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable developme...Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable development in civil engineering. Therefore, it is increasingly becoming crucial to accelerate the transition from application of non-renewable sources of raw materials to renewable raw materials. One fast renewable resource is natural plant fibers. The use of the cellulosic fibers as environmentally friendly material in building products contributes to the environmental protection and saves non-renewable resources of raw materials. Wood fibers and recycled cellulose fibers of waste paper appear as suited reinforcing elements for cement-based materials. In this paper, there is used application of Fourier transform infrared spectroscopy (FTIR) on cellulose fibers coming from different sources. FTIR spectra of cellulose fiber samples are investigated and compared with reference sample of cellulose.展开更多
Copper ions(e.g.,Cu^(2+)) have outstanding antibacterial properties,but the exact mechanism is rather complex and not fully understood.In this work,synchrotron Fourier transform infrared(FTIR) spectroscopy was used as...Copper ions(e.g.,Cu^(2+)) have outstanding antibacterial properties,but the exact mechanism is rather complex and not fully understood.In this work,synchrotron Fourier transform infrared(FTIR) spectroscopy was used as an analytical tool to investigate the CuCl_2-induced biochemical changes in Escherichia coli.Our spectral measurements indicated that this technique is sensitive enough to detect changes in membrane lipids,nucleic acids,peptidoglycans and proteins of Cu^(2+)-treated bacteria.Interestingly,for short-time treated cells,the effects on phospholipid composition were clearly shown,while no significant alterations of proteins,nucleic acids and peptidoglycans were found.PeakForce quantitative nano-mechanics mode atomic force microscopy(AFM)confirmed the changes in the topography and mechanical properties of bacteria upon the Cu^(2+) exposure.This study demonstrated that FTIR spectroscopy combined with AFM can provide more comprehensive evaluation on the biochemical and mechanical responses of bacteria to copper.展开更多
Extraction of dye from dry fruit of Rothmannia whitfieldii was carried out using four different extraction methods. Solvent and acid extraction methods gave a colourless supernatant solution after extraction time of 4...Extraction of dye from dry fruit of Rothmannia whitfieldii was carried out using four different extraction methods. Solvent and acid extraction methods gave a colourless supernatant solution after extraction time of 45 minutes at 60°C. The alkali method gave a deep brown coloured supernatant solution while the aqueous method gave a dark coloured supernatant solution after extraction under the same conditions. From the result of the FTIR spectroscopy characterization of the coloured solutions and the dry powder of Rothmannia whitfieldii fruit, it was observed that only the alkali method extracted what can be called a dye with likely presence of tannins. The result also showed that the possible functional groups present in the supernatant solution after aqueous extraction are same with the functional groups present in the dry pulverized Rothmannia whitfieldii fruit. Hence, aqueous method did not extract any dye. Similarly, a mixture of the solution after aqueous extraction with drops of alkali solution produced a deep brown coloured solution indicating solubility of the dye component in alkali media.展开更多
A high volatile bituminous coal was subjected to a series of organic acid treatment in steps using citric acid (1 hr and 2 hr) and buffered EDTA with acetic acid (1 to 3 hr) at room temperature. Leaching was performed...A high volatile bituminous coal was subjected to a series of organic acid treatment in steps using citric acid (1 hr and 2 hr) and buffered EDTA with acetic acid (1 to 3 hr) at room temperature. Leaching was performed with acetic acid (2N) also for 1 hr. Citric acid procedure reduced the mineral matter below 1.94%. Calcites and aluminates are completely removed along with substantial quantity of silicates by citric acid leaching. The change in absorption of organic functional groups and mineral matter in coal samples were studied using Fourier transform infrared spectroscopy (FTIR). Analysis indicated that oxygen containing species were decreased in the coal structure during acetic acid and citric acid (40%) procedure and buffered EDTA 3 hours leaching. As the period of leaching with buffered EDTA increased from 1 hr to 3 hr, organic functional groups and mineral functional groups decreased its intensity. The results indicated that the described acid treatment procedures with citric acid have measurable effects on the coal structure.展开更多
Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesised on silicon wafer substrate by using plasma enhanced chemical vapou...Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesised on silicon wafer substrate by using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of HSA with doped and undoped DLC films have been investigated. The chemical composition of the surface before and after adsorption was analysed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). Results showed that silicon incorporation DLC tends to increase of sp3/sp2 hybridization ratio by decreasing sp2 hybridized carbon bonding configurations. Following exposure to solutions containing (0.250 μg/ml) HSA, the results indicated that significant changes in the C, N and O levels on the surfaces with reducing of the Si2p band at 100 eV. From FTIR spectrum, the peaks occur the following functional groups were assigned as amide I and II groups at 1650 cm-1 and 1580 cm-1. Both XPS and FTIR spectroscopy confirm that HSA was bound onto the surfaces of the DLC and Si-DLC films via interaction of ionized carboxyl groups and the amino group did not play a significant role in the adsorption of protein. These results from peak intensity show that an adsorbed layer of HSA is higher at high level (19%) silicon doping. Therefore doping of DLC may provide an approach to controlling the protein adsorption.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize F...Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N^+ and Ar^+ ion beams of 25 keV with fluence ranging from 5×10^15 ions/cm^2 to 2.5×10^16 ions/cm^2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fiuence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.展开更多
Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas with about 300 times the global warming potential (GWP) of carbon dioxide (CO<sub>2</sub>). It is emitted from a wide range of sources and is ...Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas with about 300 times the global warming potential (GWP) of carbon dioxide (CO<sub>2</sub>). It is emitted from a wide range of sources and is responsible for about 6% of anthropogenic US greenhouse gas emissions. Analytical techniques are needed that can measure concentrations of N2</sub>O rapidly and inexpensively in sources that are also emitting other compounds that may interfere with the analytical process. In this work, we demonstrate the use of Fourier Transform Infrared (FTIR) spectroscopy to analyze N2</sub>O in the complex mixture of gases produced during the early phase of the silage making process. Silage gas samples were collected into Tedlar bags from the bucket silos during the first week of corn ensiling. A bag of the silage gas was analyzed using a Bruker FTIR spectrometer coupled with a long optical path length White Cell. First, N2</sub>O infrared absorption bands were identified in the FTIR spectra of the silage gas by comparing them to both standard N2</sub>O gas and simulated infrared spectra which confirmed that N2</sub>O was present in the silage gas. Then, N2</sub>O concentration in the silage gas was derived from the FTIR spectra using LINEFIT program. It was demonstrated that FTIR spectroscopy is a viable method for measuring N2</sub>O concentrations in the silage gas.展开更多
Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple anal...Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.展开更多
FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-bas...FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-based catalyst in hexane. The relationship between the signal intensity of monomer and its concentration was investigated. The kinetic study of copolymerization of Bd and Ip was further conducted, and the monomer reactivity ratios were determined via in situ ATR FTIR. The signal band at 1010 cm^-1 was assigned to wagging vibration of Bd and its intensity was proportional to Bd concentration ([Bd]) in the range of 0.46-3.88 mol.L^-1. The signal bands at 890 and 989 cm^-1 were assigned to wagging vibration of Ip and the signal intensity was also proportional to Ip concentration ([Ip]) in the range of 0.08-4.73 mol·L^-1 at 890 cm^-1 and 0.08-7.49 mol·L^-1 at 989 cm^-1, respectively. Thus the signal band at 1010 cm^-1 was chosen to monitor Bd concentration and bands at 989 and 890 cm^-1 to monitor Ip concentration during the copolymerization, respectively. It was demonstrated that the conversions of Bd and Ip calculated from FTIR data agreed very well with those obtained gravimetrically. The poiymerization rates were first order with respect to both [Bd] and [Ip], respectively at different polymerization temperatures. The apparent propagation activation energy for Bd and Ip could be determined to be 54.4 kJ·mol^-1 and 57.7 kJ·mol^-1, respectively. The monomer reactivity ratios were calculated to be 1.08 for Bd (rBd) and 0.48 for IP (rIp) based on FTIR data. The Bd-Ip copolymer products with random sequence could be obtained with only one glass transition temperature.展开更多
基金supported by the National Natural Science Foundation of China(41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in the Universities of Henan Province,China(21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(T2020-4)。
文摘Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.
基金the National Natural Science Foundation of China,No.61975069 and No.62005056Natural Science Foundation of Guangxi Province,No.2021JJB110003+2 种基金Natural Science Foundation of Guangdong Province,No.2018A0303131000Academician Workstation of Guangdong Province,No.2014B090905001Key Project of Scientific and Technological Projects of Guangzhou,No.201604040007 and No.201604020168.
文摘BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method to identify CD and ITB with high accuracy,specificity,and speed.AIM To develop a method to identify CD and ITB with high accuracy,specificity,and speed.METHODS A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB.Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis.RESULTS The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm^(-1) and 1234 cm^(-1) bands,and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy,specificity,and sensitivity of 91.84%,92.59%,and 90.90%,respectively,for the differential diagnosis of CD and ITB.CONCLUSION Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level,and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.
文摘Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.
基金funded by the Defence Science Technology Group(DSTG)。
文摘The Marplex Convention was established to prevent the manufacture of unmarked plastic explosives and stipulates that a volatile detection agent must be added at the time of manufacture.However,to-date,laboratory testing remains the internationally accepted practice for identifying and quantifying the taggants stipulated in the Convention.In this project,portable FTIR and Raman instruments were tested for their ability to detect 2,3-dimethyl-2,3-dinitrobutane(DMDNB),the chemical marker incorporated in plastic explosives that are manufactured within Australia.While both FTIR and Raman instruments detected solid DMDNB(98%purity),field analysis of plastic explosives at an Australian Defence establishment showed that both FTIR and Raman spectra were matched the relevant explosive(RDX or PETN),rather than the DMDNB taggant.For all three plastic explosives tested,the concentration of DMDNB was measured by SPME-GC-MS to be between 1.8 and 2%,greater than the minimum 1%concentration stipulated by the Marplex Convention.Additional testing with a plastic explosive analogue confirmed that the minor absorption peaks that would characterize low concentrations of DMDNB were masked by absorption bands from other compounds within the solid.Thus,while both FTIR and Raman spectroscopy are suitable for detection of plastic explosives,neither rely on the presence of DMDNB for detection.It is likely that similar results would be found for other taggants stipulated by the Marplex Convention,given they are also present in concentrations less than 1%.
文摘In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia.
基金supported by Science Frontier Project of the Chinese Academy of Sciences(No.QYZDJ-SSW-SLH019)Open Research Fund Program of Shanghai Key Laboratory of Medical Biodefense
文摘Traditional Fourier transform infrared(FTIR)spectroscopy has been recognized as a valuable method to characterize and classify kinds of microorganisms.In this study,combined with multivariate statistical analysis,synchrotron radiation-based FTIR(SR-FTIR) microspectroscopy was applied to identify and discriminate ten foodborne bacterial strains.Our results show that the whole spectra(3000-900 cm^(-1)) and three subdivided spectral regions(3000-2800,1800-1500 and 1200-900 cm^(-1),representing lipids,proteins and polysaccharides,respectively) can be used to type bacteria.Either the whole spectra or the three subdivided spectra are good for discriminating the bacteria at levels of species and subspecies,but the whole spectra should be given preference at the genus level.The findings demonstrate that SR-FTIR microspectroscopy is a powerful tool to identify and classify foodborne pathogenic bacteria at the genus,species and subspecies level.
文摘The effects of microwave energy and conventional convective heating on bovine meat were studied in the mid-infrared region by FTIR spectroscopy, to highlight the differences between the two cooking methods. Samples of 100 g of bovine breast meat were cooked using three treatments: heating in a conventional electric oven at the temperature of 165°C for 16 min, heating in a microwave oven at 800 W for 95 sec, and heating in the same microwave oven at 650 W for 160 sec. Significant decreases in intensity of vibration bands of CH2 methylene group at 1921 and 1853 cm-1 and of the carbonyl band at 1742 cm-1 were observed after microwave heating with respect to heating in a conventional oven, showing that Maillard reaction occurs partially using microwave oven. Spectral analysis in the amide I region after microwave cooking at 800 W for 95 sec showed that an increase in intensity occurred in the region from 1665 to 1690 cm-1 which can be attributed to β-turns, characteristic of disorder processes in the protein. Further analysis after microwave cooking at 650 W for 160 sec evidenced major increase in intensity of β-turns content and the appearance of significant increases of β-sheet component at 1635 cm-1 and 1695 cm-1 that can be attributed to aggregated β-sheets structures.
文摘We studied the incorporation of hydrophobic drug Taxol into a solid lipid matrices by FTIR spectroscopy. Lipid arrays containing different molar fractions of the drug were made and deposited on the spectrometer glass window substrates for obtaining multilayer stacks. The drug induced an alteration of lipid array spacings, indicating the drug-lipid recognition. Using excess amounts of Taxol provide information on extrapolations on its cellular solubility in biomembranes. The data obtained could be used further for developing novel anticancer drug formulations, as well as for elucidating its novel cellular pharmacological targets.
文摘Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable development in civil engineering. Therefore, it is increasingly becoming crucial to accelerate the transition from application of non-renewable sources of raw materials to renewable raw materials. One fast renewable resource is natural plant fibers. The use of the cellulosic fibers as environmentally friendly material in building products contributes to the environmental protection and saves non-renewable resources of raw materials. Wood fibers and recycled cellulose fibers of waste paper appear as suited reinforcing elements for cement-based materials. In this paper, there is used application of Fourier transform infrared spectroscopy (FTIR) on cellulose fibers coming from different sources. FTIR spectra of cellulose fiber samples are investigated and compared with reference sample of cellulose.
基金Supported by National Natural Science Foundation of China(No.11474298)Shanghai Pujiang Program(No.13PJ1410500)+1 种基金Special Funds for Enterprise Independent Innovation of Shanghai(CXY-2013-58)Hundred Talents Program of the Chinese Academy Sciences
文摘Copper ions(e.g.,Cu^(2+)) have outstanding antibacterial properties,but the exact mechanism is rather complex and not fully understood.In this work,synchrotron Fourier transform infrared(FTIR) spectroscopy was used as an analytical tool to investigate the CuCl_2-induced biochemical changes in Escherichia coli.Our spectral measurements indicated that this technique is sensitive enough to detect changes in membrane lipids,nucleic acids,peptidoglycans and proteins of Cu^(2+)-treated bacteria.Interestingly,for short-time treated cells,the effects on phospholipid composition were clearly shown,while no significant alterations of proteins,nucleic acids and peptidoglycans were found.PeakForce quantitative nano-mechanics mode atomic force microscopy(AFM)confirmed the changes in the topography and mechanical properties of bacteria upon the Cu^(2+) exposure.This study demonstrated that FTIR spectroscopy combined with AFM can provide more comprehensive evaluation on the biochemical and mechanical responses of bacteria to copper.
文摘Extraction of dye from dry fruit of Rothmannia whitfieldii was carried out using four different extraction methods. Solvent and acid extraction methods gave a colourless supernatant solution after extraction time of 45 minutes at 60°C. The alkali method gave a deep brown coloured supernatant solution while the aqueous method gave a dark coloured supernatant solution after extraction under the same conditions. From the result of the FTIR spectroscopy characterization of the coloured solutions and the dry powder of Rothmannia whitfieldii fruit, it was observed that only the alkali method extracted what can be called a dye with likely presence of tannins. The result also showed that the possible functional groups present in the supernatant solution after aqueous extraction are same with the functional groups present in the dry pulverized Rothmannia whitfieldii fruit. Hence, aqueous method did not extract any dye. Similarly, a mixture of the solution after aqueous extraction with drops of alkali solution produced a deep brown coloured solution indicating solubility of the dye component in alkali media.
文摘A high volatile bituminous coal was subjected to a series of organic acid treatment in steps using citric acid (1 hr and 2 hr) and buffered EDTA with acetic acid (1 to 3 hr) at room temperature. Leaching was performed with acetic acid (2N) also for 1 hr. Citric acid procedure reduced the mineral matter below 1.94%. Calcites and aluminates are completely removed along with substantial quantity of silicates by citric acid leaching. The change in absorption of organic functional groups and mineral matter in coal samples were studied using Fourier transform infrared spectroscopy (FTIR). Analysis indicated that oxygen containing species were decreased in the coal structure during acetic acid and citric acid (40%) procedure and buffered EDTA 3 hours leaching. As the period of leaching with buffered EDTA increased from 1 hr to 3 hr, organic functional groups and mineral functional groups decreased its intensity. The results indicated that the described acid treatment procedures with citric acid have measurable effects on the coal structure.
文摘Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesised on silicon wafer substrate by using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of HSA with doped and undoped DLC films have been investigated. The chemical composition of the surface before and after adsorption was analysed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). Results showed that silicon incorporation DLC tends to increase of sp3/sp2 hybridization ratio by decreasing sp2 hybridized carbon bonding configurations. Following exposure to solutions containing (0.250 μg/ml) HSA, the results indicated that significant changes in the C, N and O levels on the surfaces with reducing of the Si2p band at 100 eV. From FTIR spectrum, the peaks occur the following functional groups were assigned as amide I and II groups at 1650 cm-1 and 1580 cm-1. Both XPS and FTIR spectroscopy confirm that HSA was bound onto the surfaces of the DLC and Si-DLC films via interaction of ionized carboxyl groups and the amino group did not play a significant role in the adsorption of protein. These results from peak intensity show that an adsorbed layer of HSA is higher at high level (19%) silicon doping. Therefore doping of DLC may provide an approach to controlling the protein adsorption.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.
基金supported by National Natural Science Foundation of China (No.10975152)the Key Innovative Project of Chinese Academy of Sciences (No.KJCX2-YW-N34-1)+1 种基金the Hundred Talents Program of the Chinese Academy of Sciencesthe Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N^+ and Ar^+ ion beams of 25 keV with fluence ranging from 5×10^15 ions/cm^2 to 2.5×10^16 ions/cm^2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fiuence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.
文摘Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas with about 300 times the global warming potential (GWP) of carbon dioxide (CO<sub>2</sub>). It is emitted from a wide range of sources and is responsible for about 6% of anthropogenic US greenhouse gas emissions. Analytical techniques are needed that can measure concentrations of N2</sub>O rapidly and inexpensively in sources that are also emitting other compounds that may interfere with the analytical process. In this work, we demonstrate the use of Fourier Transform Infrared (FTIR) spectroscopy to analyze N2</sub>O in the complex mixture of gases produced during the early phase of the silage making process. Silage gas samples were collected into Tedlar bags from the bucket silos during the first week of corn ensiling. A bag of the silage gas was analyzed using a Bruker FTIR spectrometer coupled with a long optical path length White Cell. First, N2</sub>O infrared absorption bands were identified in the FTIR spectra of the silage gas by comparing them to both standard N2</sub>O gas and simulated infrared spectra which confirmed that N2</sub>O was present in the silage gas. Then, N2</sub>O concentration in the silage gas was derived from the FTIR spectra using LINEFIT program. It was demonstrated that FTIR spectroscopy is a viable method for measuring N2</sub>O concentrations in the silage gas.
文摘Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.
基金supported by the National 863 program(No.2006AA03Z552)the National Natural Science Foundation of China(No.50903003)China Petroleum Chemical Corp.(SINOPEC)and Program for Changjiang Scholars and Innovative Research Teams in Universities(IRT0706)
文摘FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-based catalyst in hexane. The relationship between the signal intensity of monomer and its concentration was investigated. The kinetic study of copolymerization of Bd and Ip was further conducted, and the monomer reactivity ratios were determined via in situ ATR FTIR. The signal band at 1010 cm^-1 was assigned to wagging vibration of Bd and its intensity was proportional to Bd concentration ([Bd]) in the range of 0.46-3.88 mol.L^-1. The signal bands at 890 and 989 cm^-1 were assigned to wagging vibration of Ip and the signal intensity was also proportional to Ip concentration ([Ip]) in the range of 0.08-4.73 mol·L^-1 at 890 cm^-1 and 0.08-7.49 mol·L^-1 at 989 cm^-1, respectively. Thus the signal band at 1010 cm^-1 was chosen to monitor Bd concentration and bands at 989 and 890 cm^-1 to monitor Ip concentration during the copolymerization, respectively. It was demonstrated that the conversions of Bd and Ip calculated from FTIR data agreed very well with those obtained gravimetrically. The poiymerization rates were first order with respect to both [Bd] and [Ip], respectively at different polymerization temperatures. The apparent propagation activation energy for Bd and Ip could be determined to be 54.4 kJ·mol^-1 and 57.7 kJ·mol^-1, respectively. The monomer reactivity ratios were calculated to be 1.08 for Bd (rBd) and 0.48 for IP (rIp) based on FTIR data. The Bd-Ip copolymer products with random sequence could be obtained with only one glass transition temperature.