Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of th...The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.展开更多
Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
The Southern Oscillation Index (SOI) time series is analyzed by means of the singular spectrum analysis (SSA) method with 60-month window length. Two major oscillatory pairs are found in the series whose periods are q...The Southern Oscillation Index (SOI) time series is analyzed by means of the singular spectrum analysis (SSA) method with 60-month window length. Two major oscillatory pairs are found in the series whose periods are quasi-four and quasi-two years respectively. The auto-regressive model, which is developed on the basis of the Maximum Entropy Spectrum Analysis, is fitted to each of the 9 leading components including the oscillatory pairs. The prediction of SOI with the 36-month lead is obtained from the reconstruction of these extrapolated series. Correlation coefficient between predicted series and 5 months running mean of observed series is up to 0.8. The model can successfully predict the peak and duration of the strong ENSO event from 1997 to 1998. It's also shown that the proper choice of reconstructed components is the key to improve the model prediction.展开更多
To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduce...To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.展开更多
Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Aiming at two governing types of surface variation,warping and waviness,a comprehensive approach of geometric c...Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Aiming at two governing types of surface variation,warping and waviness,a comprehensive approach of geometric covariance modeling based on hybrid polynomial approximation and spectrum analysis is proposed,which can formulate the level and the correlation of surface variations accurately. Firstly,the form error data of compliant part is acquired by CMM. Thereafter,a Fourier-Legendre polynomial decomposition is conducted and the error data are approximated by a Legendre polynomial series. The weighting coefficient of each component is decided by least square method for extracting the warping from the surface variation. Consequently,a geometrical covariance expression for warping deformation is established. Secondly,a Fourier-sinusoidal decomposition is utilized to approximate the waviness from the residual error data. The spectrum is analyzed is to identify the frequency and the amplitude of error data. Thus,a geometrical covariance expression for the waviness is deduced. Thirdly,a comprehensive geometric covariance model for surface variation is developed by the combination the Legendre polynomials with the sinusoidal polynomials. Finally,a group of L-shape sheet metals is measured along a specific contour,and the covariance of the profile errors is modeled by the proposed method. Thereafter,the result is compared with the covariance from two other methods and the real data. The result shows that the proposed covariance model can match the real surface error effectively and represents a tighter approximation error compared with the referred methods.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models...An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.展开更多
We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including...We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.展开更多
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2...This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.展开更多
Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in ...Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in the Earth's rotation rate. In this study we analysed maps of regional input into the effective axial AAM from 1948 through 2011 from NCEP/NCAR reanalysis. Global zonal circulation patterns related to the LOD(length of day) were described. We applied MSSA(Multichannel Singular Spectrum Analysis) jointly to the mass and motion components of AAM, which allowed us to extract annual, semiannual, 4-mo nth, quasi-biennial, 5-year, and low-frequency oscillations. PCs(Principal components) strongly related to ENSO(El Nino southern oscillation) were released. They can be used to study ENSO-induced changes in pressure and wind fields and their coupling to LOD. The PCs describing the trends have captured slow atmospheric circulation changes possibly related to climate variability.展开更多
Based on the model of a contaminated sea surface that was proposed by Lombardini et al., the influence of the damping effect of oil films on the sea surface roughness spectrum and the geometrical structure of the sea ...Based on the model of a contaminated sea surface that was proposed by Lombardini et al., the influence of the damping effect of oil films on the sea surface roughness spectrum and the geometrical structure of the sea surface is examined in detail by comparing with a clean sea surface. Fhrthermore, based on a quasi-stationary algorithm, a time series of backscattered echoes from a time-evolving sea surface covered by oil slicks is obtained by utilizing the frequency-domain numerical method of the parallel fast multiple method. Then, the Doppler spectrum is evaluated by performing a standard spectral estimation technique. Finally, the influence of the oil film damping effect on the Doppler spectrum of the backscattered echoes from time-evolving sea surface is investigated in detail by making a comparison of the Doppler spectrum of an oil-covered sea surface with the Doppler spectrum of a dean sea surface. The numerical simulations show that the damping effect of oil films has an influence on the Doppler spectrum signature for both horizontal-to-horizontal and vertical-to-vertical polarizations.展开更多
The total organic carbon (TOC) content series from the lake sediment of Minqin Basin (100°57′–104°57′E, 37°48′–39°17′N) in northwestern China, which has a 10 000-year-long paleo-climatic prox...The total organic carbon (TOC) content series from the lake sediment of Minqin Basin (100°57′–104°57′E, 37°48′–39°17′N) in northwestern China, which has a 10 000-year-long paleo-climatic proxy record, was used to analyze the Holocene climate changes in the local region. The proxy record was established in the Sanjiaocheng (SJC), Triangle Town in Chinese, Section (103°20′25″E, 39°00′38″N), which is located at the northwestern boundary of the present Asian summer monsoon in China, and is sensitive to global environmental and climate changes. Applying singular spectrum analysis (SSA) to the TOC series, principal climatic oscillations and periodical changes were studied. The results reveal 3 major patterns of climate change regulated by reconstructed components (RCs). The first pattern is natural long-term trend of climatic change in the local area (Minqin Basin), indicating a relatively wetter stage in early Holocene (starting at 9.5 kaBP), and a relatively dryer stage with a strong lake desiccation and a declined vegetation cover in mid-Holocene (during 7–6 kaBP). From 4.0 kaBP to the present, there has been a gradually decreasing trend in the third reconstructed component (RC3) showing that the local climate changed again into a dryer stage. The second pattern shows millennial-centennial scale oscillations containing cycles of 1 600 and 800 years that have been present throughout almost the entire Holocene period of the last 10 000 years. The third pattern is a millennial-centennial scale variation with a relatively smaller amplitude and unclear cycles showing a nonlinear interaction within the earth’s climate systems.展开更多
Due to non-saturating magnetoresistance(MR)and the special compensation mechanism,the Weyl semimetal Ta As single crystal has attracted considerable attention in condensed matter physics.Herein,we use maximum entropy ...Due to non-saturating magnetoresistance(MR)and the special compensation mechanism,the Weyl semimetal Ta As single crystal has attracted considerable attention in condensed matter physics.Herein,we use maximum entropy mobility spectrum analysis(MEMSA)to extract charge carrier information by fitting the experimentally measured longitudinal and transverse electric transport curves of Ta As.The carrier types and the number of bands are obtained without any hypothesis.Study of the temperature dependence shows details of carrier property evolution.Our quantitative results explain the nonsaturated magnetoresistance and Hall sign change phenomena of TaAs.展开更多
Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ra...Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ratio of (1.5.) The second order full extension ETG finite element method was developed by Wang and He. By means of Taylor expansion of terms containing time derivative, time derivative is replaced by space derivative. The function of it is equal to introducing an artificial viscosity term. The streamlines of the flow at different moments were obtained. The time history of drag coefficient, lift coefficient and the streamwise velocity on the symmetrical points were presented. Furthermore, the symmetrical problem of the frequency spectrum of flow around two square cylinders arranged side by side were studied by using the spectral analysis technology. The data obtained at the initial stage are excluded in order to avoid the influence of initial condition on the results. The power spectrums of drag coefficient, lift coefficient, the streamwise velocity on the symmetrical points were analyzed respectively. The results show that although the time domain process of dynamic parameters is non-symmetrical, the frequency domain process of them is symmetrical under the symmetrical boundary conditions.展开更多
An algorithm based on the data-adaptive filtering characteristics of singular spectrum analysis (SSA) is proposed to denoise chaotic data. Firstly, the empirical orthogonal functions (EOFs) and principal components (P...An algorithm based on the data-adaptive filtering characteristics of singular spectrum analysis (SSA) is proposed to denoise chaotic data. Firstly, the empirical orthogonal functions (EOFs) and principal components (PCs) of the signal were calculated, reconstruct the signal using the EOFs and PCs, and choose the optimal reconstructing order based on sigular spectrum to obtain the denoised signal. The noise of the signal can influence the calculating precision of maximal Liapunov exponents. The proposed denoising algorithm was applied to the maximal Liapunov exponents calculations of two chaotic system, Henon map and Logistic map. Some numerical results show that this denoising algorithm could improve the calculating precision of maximal Liapunov exponent.展开更多
A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the p...A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data.展开更多
The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wav...The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wavelet-based de-noising scheme that can improve the enhancement performance significantly in the presence of additive white Gaussian noise.The proposed algorithm can adaptively select the optimal decomposition level of wavelet transformation according to the characteristics of noisy speech.The experimental results demonstrate that this proposed algorithm outperforms the classical wavelet-based de-noising method and effectively improves the practicability of this kind of techniques.展开更多
The phase difference Δξ between locked islands(2/1 and 3/1) has been found to influence the heat transport on the thermal quench during disruptions by numerical modeling [Hu Q et al 2019Nucl.Fusion 59,016005].To ver...The phase difference Δξ between locked islands(2/1 and 3/1) has been found to influence the heat transport on the thermal quench during disruptions by numerical modeling [Hu Q et al 2019Nucl.Fusion 59,016005].To verify this experimentally,a set of resonant magnetic perturbation(RMP) coils is required to excite coupled magnetic islands with different Δξ.The spectrum analysis shows that the current RMP coils on J-TEXT can only produce sufficient 2/1 and 3/1RMP fields with a limited phase difference of Δξ∈[-75°,75°].In order to broaden the adjustable range of Δξ,a set of coils on the high field side(HFS) is proposed to generate 2/1 and 3/1 RMP fields with Δξ=180°.As a result,RMPs with adjustable Δξ∈[-180°,180°] and sufficient amplitudes could be achieved by applying the HFS coils and the low field side(LFS)coils.This work provides a feasible solution for flexible adjustment of the phase difference between m and m+1 RMP,which might facilitate the study of major disruptions and their control.展开更多
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2007204)the Natural Sci-ence Foundation of Educational Department of Jiangsu Province(07KJD140208)~~
文摘The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
基金This work was supported by the" National Key Project Studies on Short-Range Climate PredictionSystem in China" (96-908-04-02).
文摘The Southern Oscillation Index (SOI) time series is analyzed by means of the singular spectrum analysis (SSA) method with 60-month window length. Two major oscillatory pairs are found in the series whose periods are quasi-four and quasi-two years respectively. The auto-regressive model, which is developed on the basis of the Maximum Entropy Spectrum Analysis, is fitted to each of the 9 leading components including the oscillatory pairs. The prediction of SOI with the 36-month lead is obtained from the reconstruction of these extrapolated series. Correlation coefficient between predicted series and 5 months running mean of observed series is up to 0.8. The model can successfully predict the peak and duration of the strong ENSO event from 1997 to 1998. It's also shown that the proper choice of reconstructed components is the key to improve the model prediction.
基金supported partly by the New Century Excellent Talents in University(23901019)the Sichuan Provincial Youth Science and Technology Foundation(06ZQ026-006).
文摘To deal with the non-Caussian noise in standard 2-D SAR images, the deramped signal in imaging plane, and the possible symmetric distribution of complex noise, the fourth-order cumulant of complex process is introduced into SAR tomography. With the estimated AR parameters of ARMA model of noise through Yule-Walker equation, the signal series of height is pre-filtered. Then, through ESPRIT, the spectrum is obtained and the aperture in height direction is synthesized. Finally, the SAR tomography imaging of scene is achieved. The results of processing on signal with non-Gaussian noise demonstrate the robustness of the proposed method. The tomography imaging of the scenes shows that the higher-order spectrum analysis is feasible in the application.
基金Supported by the National Natural Science Foundation of China(50905084,51275236)the Aeronautical Science Foundation of China(2010ZE52054)
文摘Part variation characterization is essential to analyze the variation propagation in flexible assemblies. Aiming at two governing types of surface variation,warping and waviness,a comprehensive approach of geometric covariance modeling based on hybrid polynomial approximation and spectrum analysis is proposed,which can formulate the level and the correlation of surface variations accurately. Firstly,the form error data of compliant part is acquired by CMM. Thereafter,a Fourier-Legendre polynomial decomposition is conducted and the error data are approximated by a Legendre polynomial series. The weighting coefficient of each component is decided by least square method for extracting the warping from the surface variation. Consequently,a geometrical covariance expression for warping deformation is established. Secondly,a Fourier-sinusoidal decomposition is utilized to approximate the waviness from the residual error data. The spectrum is analyzed is to identify the frequency and the amplitude of error data. Thus,a geometrical covariance expression for the waviness is deduced. Thirdly,a comprehensive geometric covariance model for surface variation is developed by the combination the Legendre polynomials with the sinusoidal polynomials. Finally,a group of L-shape sheet metals is measured along a specific contour,and the covariance of the profile errors is modeled by the proposed method. Thereafter,the result is compared with the covariance from two other methods and the real data. The result shows that the proposed covariance model can match the real surface error effectively and represents a tighter approximation error compared with the referred methods.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
基金supported by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ206in part by the Science and Technology Department of Shaanxi Province under Grant 2020CGXNG-009in part by the Education Department of Shaanxi Province under Grant 17JK0346。
文摘An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.
文摘We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.
文摘This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.
基金supported by Russian Foundation for Basic Research grants No. 17-05-00989, No. 16-05-00753,NRU HSE and visiting grants positions at Paris observatory and Wuhan university for the first authorpartially supported by grants by NSF/IGFA Belmont Forum Project (Grant No. ICER-1342644)the Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams(Grant No. KZZD-EW-TZ-05)
文摘Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in the Earth's rotation rate. In this study we analysed maps of regional input into the effective axial AAM from 1948 through 2011 from NCEP/NCAR reanalysis. Global zonal circulation patterns related to the LOD(length of day) were described. We applied MSSA(Multichannel Singular Spectrum Analysis) jointly to the mass and motion components of AAM, which allowed us to extract annual, semiannual, 4-mo nth, quasi-biennial, 5-year, and low-frequency oscillations. PCs(Principal components) strongly related to ENSO(El Nino southern oscillation) were released. They can be used to study ENSO-induced changes in pressure and wind fields and their coupling to LOD. The PCs describing the trends have captured slow atmospheric circulation changes possibly related to climate variability.
基金Supported by the National Science Foundation for Distinguished Young Scholars of China under Grant No 61225002the Aeronautical Science Fund and Aviation Key Laboratory of Science and Technology on AISSS of China under Grant No20132081015
文摘Based on the model of a contaminated sea surface that was proposed by Lombardini et al., the influence of the damping effect of oil films on the sea surface roughness spectrum and the geometrical structure of the sea surface is examined in detail by comparing with a clean sea surface. Fhrthermore, based on a quasi-stationary algorithm, a time series of backscattered echoes from a time-evolving sea surface covered by oil slicks is obtained by utilizing the frequency-domain numerical method of the parallel fast multiple method. Then, the Doppler spectrum is evaluated by performing a standard spectral estimation technique. Finally, the influence of the oil film damping effect on the Doppler spectrum of the backscattered echoes from time-evolving sea surface is investigated in detail by making a comparison of the Doppler spectrum of an oil-covered sea surface with the Doppler spectrum of a dean sea surface. The numerical simulations show that the damping effect of oil films has an influence on the Doppler spectrum signature for both horizontal-to-horizontal and vertical-to-vertical polarizations.
基金the National Natural Science Foundation of China (NSFC) (No. 40571169)the NSFC’s Innovation Team Project (No. 40421101), and the NSFC’s Key Program Project (No. 90502008)
文摘The total organic carbon (TOC) content series from the lake sediment of Minqin Basin (100°57′–104°57′E, 37°48′–39°17′N) in northwestern China, which has a 10 000-year-long paleo-climatic proxy record, was used to analyze the Holocene climate changes in the local region. The proxy record was established in the Sanjiaocheng (SJC), Triangle Town in Chinese, Section (103°20′25″E, 39°00′38″N), which is located at the northwestern boundary of the present Asian summer monsoon in China, and is sensitive to global environmental and climate changes. Applying singular spectrum analysis (SSA) to the TOC series, principal climatic oscillations and periodical changes were studied. The results reveal 3 major patterns of climate change regulated by reconstructed components (RCs). The first pattern is natural long-term trend of climatic change in the local area (Minqin Basin), indicating a relatively wetter stage in early Holocene (starting at 9.5 kaBP), and a relatively dryer stage with a strong lake desiccation and a declined vegetation cover in mid-Holocene (during 7–6 kaBP). From 4.0 kaBP to the present, there has been a gradually decreasing trend in the third reconstructed component (RC3) showing that the local climate changed again into a dryer stage. The second pattern shows millennial-centennial scale oscillations containing cycles of 1 600 and 800 years that have been present throughout almost the entire Holocene period of the last 10 000 years. The third pattern is a millennial-centennial scale variation with a relatively smaller amplitude and unclear cycles showing a nonlinear interaction within the earth’s climate systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674054,U1932217,and 11704067)。
文摘Due to non-saturating magnetoresistance(MR)and the special compensation mechanism,the Weyl semimetal Ta As single crystal has attracted considerable attention in condensed matter physics.Herein,we use maximum entropy mobility spectrum analysis(MEMSA)to extract charge carrier information by fitting the experimentally measured longitudinal and transverse electric transport curves of Ta As.The carrier types and the number of bands are obtained without any hypothesis.Study of the temperature dependence shows details of carrier property evolution.Our quantitative results explain the nonsaturated magnetoresistance and Hall sign change phenomena of TaAs.
文摘Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ratio of (1.5.) The second order full extension ETG finite element method was developed by Wang and He. By means of Taylor expansion of terms containing time derivative, time derivative is replaced by space derivative. The function of it is equal to introducing an artificial viscosity term. The streamlines of the flow at different moments were obtained. The time history of drag coefficient, lift coefficient and the streamwise velocity on the symmetrical points were presented. Furthermore, the symmetrical problem of the frequency spectrum of flow around two square cylinders arranged side by side were studied by using the spectral analysis technology. The data obtained at the initial stage are excluded in order to avoid the influence of initial condition on the results. The power spectrums of drag coefficient, lift coefficient, the streamwise velocity on the symmetrical points were analyzed respectively. The results show that although the time domain process of dynamic parameters is non-symmetrical, the frequency domain process of them is symmetrical under the symmetrical boundary conditions.
文摘An algorithm based on the data-adaptive filtering characteristics of singular spectrum analysis (SSA) is proposed to denoise chaotic data. Firstly, the empirical orthogonal functions (EOFs) and principal components (PCs) of the signal were calculated, reconstruct the signal using the EOFs and PCs, and choose the optimal reconstructing order based on sigular spectrum to obtain the denoised signal. The noise of the signal can influence the calculating precision of maximal Liapunov exponents. The proposed denoising algorithm was applied to the maximal Liapunov exponents calculations of two chaotic system, Henon map and Logistic map. Some numerical results show that this denoising algorithm could improve the calculating precision of maximal Liapunov exponent.
基金the State Key Program for Basic Research of China(No.2007CB816003)the Open Item of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics of China
文摘A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data.
文摘The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wavelet-based de-noising scheme that can improve the enhancement performance significantly in the presence of additive white Gaussian noise.The proposed algorithm can adaptively select the optimal decomposition level of wavelet transformation according to the characteristics of noisy speech.The experimental results demonstrate that this proposed algorithm outperforms the classical wavelet-based de-noising method and effectively improves the practicability of this kind of techniques.
基金supported by the National Magnetic Confinement Fusion Energy R & D Program of China (Nos. 2018YFE0309102 and 2019YFE03010004)National Natural Science Foundation of China (Nos.12075096, 11905078,and 51821005)
文摘The phase difference Δξ between locked islands(2/1 and 3/1) has been found to influence the heat transport on the thermal quench during disruptions by numerical modeling [Hu Q et al 2019Nucl.Fusion 59,016005].To verify this experimentally,a set of resonant magnetic perturbation(RMP) coils is required to excite coupled magnetic islands with different Δξ.The spectrum analysis shows that the current RMP coils on J-TEXT can only produce sufficient 2/1 and 3/1RMP fields with a limited phase difference of Δξ∈[-75°,75°].In order to broaden the adjustable range of Δξ,a set of coils on the high field side(HFS) is proposed to generate 2/1 and 3/1 RMP fields with Δξ=180°.As a result,RMPs with adjustable Δξ∈[-180°,180°] and sufficient amplitudes could be achieved by applying the HFS coils and the low field side(LFS)coils.This work provides a feasible solution for flexible adjustment of the phase difference between m and m+1 RMP,which might facilitate the study of major disruptions and their control.