期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving the resolution of seismic traces based on the secondary time-frequency spectrum 被引量:11
1
作者 Wang De-Ying Huang Jian.Ping +2 位作者 Kong Xue Li Zhen-Chun Wang Jiao 《Applied Geophysics》 SCIE CSCD 2017年第2期236-246,323,共12页
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th... The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR). 展开更多
关键词 RESOLUTION S transform time-frequency spectrum time-variant wavelet spectrum-modeling deconvolution Q compensation
下载PDF
A predictive deconvolution method for non-white-noise refl ectivity 被引量:3
2
作者 Wang De-Ying Kong Xue +3 位作者 Dong Lie-Qian Chen Li-Hua Wang Yong-Jun Wang Xiao-Chen 《Applied Geophysics》 SCIE CSCD 2019年第1期101-115,共15页
Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and elimina... Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and eliminate the correlated components of the seismic records, attenuate multiples, and improve seismic resolution. However, in practice, the primary refl ectivity series of fi eld data rarely satisfy the white noise sequence assumption, with the result that the correlated components of the primary reflectivity series are also eliminated by traditional deconvolution. This results in signal distortion. To solve this problem, we have proposed an improved method for deconvolution. First, we estimated the wavelet correlation from seismic records using the spectrum-modeling method. Second, this wavelet autocorrelation was used to construct a new autocorrelation function which contains the correlated components caused by the existence of multiples and avoids the correlated components of the primary reflectivity series. Finally, the new autocorrelation function was brought into the WH equation, and the predictive fi lter operator was calculated for deconvolution. In this paper, we have applied this new method to simulated and field data processing, and we have compared its performance with that of traditional predictive deconvolution. Our results show that the new method can adapt to non-white refl ectivity series without changing the statistical characteristics of the primary reflection coefficient series. Compared with traditional predictive deconvolution, the new method reduces processing noise and improves fidelity, all while maintaining the ability to attenuate multiples and enhance seismic resolution. 展开更多
关键词 Non-white reflectivity series predictive deconvolution spectrum-modeling multiples resolution AUTOCORRELATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部