Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp struc...Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents.展开更多
In 2014,Typhoon Rammasun invaded Qinzhou,Guangxi,causing damage to the wind tower sensor at 80 m in Qinzhou.In order to restore the wind speed at 80 m at that time,this paper was based on the hourly average wind speed...In 2014,Typhoon Rammasun invaded Qinzhou,Guangxi,causing damage to the wind tower sensor at 80 m in Qinzhou.In order to restore the wind speed at 80 m at that time,this paper was based on the hourly average wind speed data of the wind tower and meteorological station from 2017–2019,and constructed the wind speed related model of Meteorological Station and the wind measuring tower in Qinzhou,Moreover,this paper Based on the hourly average wind speed data of Qinzhou Meteorological Station in 2014,Restored the hourly average wind speed of the anemometer tower during Rammasun landfalled.The results showed it is significant correlation that the hourly mean wind speed of the wind tower at 80 m and the hourly mean wind speed of meteorological station at 100 m(R2=0.9632),and speed of the wind measuring tower and speed of meteorological station constitutes an equation,This equation is Y=0.7834X.The hourly average wind speed of the wind tower at 80 m during the 2014 Rammasun Landing was restored using this model.See the results in Schedule 4.展开更多
Comparing and analyzing the difference between automatic-observed and manual-observed wind speed based on the wind speed parallel observations in two methods, we find that many elements can influence the difference be...Comparing and analyzing the difference between automatic-observed and manual-observed wind speed based on the wind speed parallel observations in two methods, we find that many elements can influence the difference between automatic-observed and manual-observed wind speed, including the levels of speed wind, observation instruments and different regions. According to these elements, correction has been conducted, and find that the correction according to the level of wind speed has the best correction effect.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 91215302)"One-Three-Five" Strategic Planning (wind power prediction) of the Institute of Atmospheric Physics, Chinese Academy of Sciences (CAS) (Grant No. Y267014601)the Strategic Project of Science and Technology of CAS (Grant No. XDA05040301)
文摘Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents.
基金This work was supported by the Second Tibet Plateau Scientific Expedition and Research Program(STEP)under Grant Number 2019QZKK0804the National Natural Science Foundation of China“Study on the dynamic mechanism of grassland ecosystem response to climate change in Qinghai Plateau”under Grant Number U20A2098.
文摘In 2014,Typhoon Rammasun invaded Qinzhou,Guangxi,causing damage to the wind tower sensor at 80 m in Qinzhou.In order to restore the wind speed at 80 m at that time,this paper was based on the hourly average wind speed data of the wind tower and meteorological station from 2017–2019,and constructed the wind speed related model of Meteorological Station and the wind measuring tower in Qinzhou,Moreover,this paper Based on the hourly average wind speed data of Qinzhou Meteorological Station in 2014,Restored the hourly average wind speed of the anemometer tower during Rammasun landfalled.The results showed it is significant correlation that the hourly mean wind speed of the wind tower at 80 m and the hourly mean wind speed of meteorological station at 100 m(R2=0.9632),and speed of the wind measuring tower and speed of meteorological station constitutes an equation,This equation is Y=0.7834X.The hourly average wind speed of the wind tower at 80 m during the 2014 Rammasun Landing was restored using this model.See the results in Schedule 4.
基金Supported by Meteorological Data Sharing Center Project (2005DKA31700-01,GX07-01-01)2009 Specific Research in Non-profit Sector (200906041-053)
文摘Comparing and analyzing the difference between automatic-observed and manual-observed wind speed based on the wind speed parallel observations in two methods, we find that many elements can influence the difference between automatic-observed and manual-observed wind speed, including the levels of speed wind, observation instruments and different regions. According to these elements, correction has been conducted, and find that the correction according to the level of wind speed has the best correction effect.