Felines use their spinal column to increase their running speed at rapid locomotion performance. However, its motion profile behavior during fast gait locomotion has little attention. The goal of this study is to exam...Felines use their spinal column to increase their running speed at rapid locomotion performance. However, its motion profile behavior during fast gait locomotion has little attention. The goal of this study is to examine the relative spinal motion profile during two different galloping gait speeds. To understand this dynamic behavior trend, a dynamic motion of the feline animal (Felis catus domestica) was measured and analyzed by motion capture devices. Based on the experiments at two different galloping gaits, we observed a significant increase in speed (from 3.2 m.s-1 to 4.33 m.s-1) during the relative motion profile synchronization between the spinal (range: 118.86~ to 168.00~) and pelvic segments (range: 46.35~ to 91.13~) during the hindlimb stance phase (time interval: 0.495 s to 0.600 s). Based on this discovery, the relative angular speed profile was applied to understand the possibility that the role of the relative motion match during high speed locomotion generates bigger ground reaction force.展开更多
The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enab...The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enables the electro-hydraulic speed servo to respond to a step command without steady-state error, and also to follow successfully a sinusoidal command at the frequency higher than that the system resulted from traditional design can reach. The numerical example-based comparison in dynamic and static behavior shows also the PDF system is superior to the traditional system in terms of both the capability of handling loads applied to the system and the robustness to ignore variation and uncertainty of the parameters of the hydraulic valve-actuator unit in operation.展开更多
The internal leakage has important influence on low speed performance of continuous rotary electro-hydraulic motors,and research on internal leakage is of important significance to improve the motor low speed performa...The internal leakage has important influence on low speed performance of continuous rotary electro-hydraulic motors,and research on internal leakage is of important significance to improve the motor low speed performance. UG software is adopted to establish a flow field inside a motor,which ignores the gap between the blade and the blade groove,and a motor fluid model in different working conditions is established. Using ICEM-CFD to generate high-quality O-Net mesh for meeting the computing requirements,the flow field inside the motor is simulated using fluid simulation software CFX. Applying reasonable boundary conditions and then solving it,pressure field distribution and the variation rule of internal leakage with different pressure difference in the flow field are obtained when the clearance value of the motor key components is 0.01 mm. At the same time the motor's leakage experiment has also been done to verify the validity of the simulation results,which lays a foundation for the study of motor internal leakage effect on the low speed performance.展开更多
In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematic...In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematical model of electro-hydraulic servo system of continuous rotary motor is established,and the whole system is decomposed into several lower order subsystems,and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory,an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability,and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor,and the proposed control strategy is feasible.展开更多
The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In orde...The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In order to improve the anti-cavitation performance of the centrifugal pumps, variable-pitch inducers are placed upstream of the impeller. Because the rotational speeds directly affect the flow and the performance of the pump, it is essential to characterize the performance of the pump with a variable-pitch inducer at various rotational speeds. In this paper, the simulations and the experimental tests of a centrifugal pump with a variable-pitch inducer are designed and carried out under various rotational speed conditions. Navier-Stokes equations, coupled with a Reynolds average simulation approach, are used in the simulations. In the experimental tests, the external and anti-cavitation performances of the pump are investigated in a closed system. The following results are obtained from the simulations. Firstly, the velocity in the passage of the inducer rises with the increase of the rotational speed. Secondly, the static pressure escalates on the inducer and the impeller with the increase of the rotational speed. Thirdly, the static pressure distribution on the inducer and the impeller is asymmetric. Fourthly, the anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Additional results are gathered from an analysis of the experiments. H-Q curves are similar parabolas at various rotational speeds, while η-Q curves are similar parabolas only when n ≤6 000 r/min. The anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Finally, the simulation results are found to be consistent with the experimental results.展开更多
Statistical data analysis and visualization approaches to identify ship speed power performance under relative wind(i.e.apparent wind)profiles are considered in this study.Ship performance and navigation data of a sel...Statistical data analysis and visualization approaches to identify ship speed power performance under relative wind(i.e.apparent wind)profiles are considered in this study.Ship performance and navigation data of a selected vessel are analyzed,where various data anomalies,i.e.sensor related erroneous data conditions,are identified.Those erroneous data conditions are investigated and several approaches to isolate such situations are also presented by considering appropriate data visualization methods.Then,the cleaned data are used to derive various relationships among ship performance and navigation parameters that have been visualized in this study,appropriately.The results show that the wind profiles along ship routes can be used to evaluate vessel performance and navigation conditions by assuming the respective sea states relate to their wind conditions.Hence,the results are useful to derive appropriate mathematical models that represent ship performance and navigation conditions.Such mathematical models can be used for weather routing type applications(i.e.voyage planning),where the respective weather forecast can be used to derive optimal ship routes to improve vessel performance and reduce fuel consumption.This study presents not only an overview of statistical data analysis of ship performance and navigation data but also the respective challenges in data anomalies(i.e.erroneous data intervals and sensor faults)due to onboard sensors and data handling systems.Furthermore,the respective solutions to such challenges in data quality have also been presented by considering data visualization approaches.展开更多
文摘Felines use their spinal column to increase their running speed at rapid locomotion performance. However, its motion profile behavior during fast gait locomotion has little attention. The goal of this study is to examine the relative spinal motion profile during two different galloping gait speeds. To understand this dynamic behavior trend, a dynamic motion of the feline animal (Felis catus domestica) was measured and analyzed by motion capture devices. Based on the experiments at two different galloping gaits, we observed a significant increase in speed (from 3.2 m.s-1 to 4.33 m.s-1) during the relative motion profile synchronization between the spinal (range: 118.86~ to 168.00~) and pelvic segments (range: 46.35~ to 91.13~) during the hindlimb stance phase (time interval: 0.495 s to 0.600 s). Based on this discovery, the relative angular speed profile was applied to understand the possibility that the role of the relative motion match during high speed locomotion generates bigger ground reaction force.
基金This work is supported by National Natural Science Foundation of china under grant 59475075.
文摘The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enables the electro-hydraulic speed servo to respond to a step command without steady-state error, and also to follow successfully a sinusoidal command at the frequency higher than that the system resulted from traditional design can reach. The numerical example-based comparison in dynamic and static behavior shows also the PDF system is superior to the traditional system in terms of both the capability of handling loads applied to the system and the robustness to ignore variation and uncertainty of the parameters of the hydraulic valve-actuator unit in operation.
基金Supported by the National Natural Science Foundation of China(No.51305108)Heilongjiang Province Ordinary Higher School Youth Academic Backbone Support Program(No.1254G025)Post Doctoral Researchers Settled in Heilongjiang Research Start Funding Projects(No.LBH-Q15069)
文摘The internal leakage has important influence on low speed performance of continuous rotary electro-hydraulic motors,and research on internal leakage is of important significance to improve the motor low speed performance. UG software is adopted to establish a flow field inside a motor,which ignores the gap between the blade and the blade groove,and a motor fluid model in different working conditions is established. Using ICEM-CFD to generate high-quality O-Net mesh for meeting the computing requirements,the flow field inside the motor is simulated using fluid simulation software CFX. Applying reasonable boundary conditions and then solving it,pressure field distribution and the variation rule of internal leakage with different pressure difference in the flow field are obtained when the clearance value of the motor key components is 0.01 mm. At the same time the motor's leakage experiment has also been done to verify the validity of the simulation results,which lays a foundation for the study of motor internal leakage effect on the low speed performance.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51305108)Foundation for the Heilongjiang Province Ordinary University Youth Academic Backbone Support Program(Grant No.1254G025)China Postdoctoral Science Foundation(Grant No.2012M510982)
文摘In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematical model of electro-hydraulic servo system of continuous rotary motor is established,and the whole system is decomposed into several lower order subsystems,and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory,an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability,and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor,and the proposed control strategy is feasible.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51406185,51579225)the Third Level 151 Talent Project in Zhejiang Province
文摘The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In order to improve the anti-cavitation performance of the centrifugal pumps, variable-pitch inducers are placed upstream of the impeller. Because the rotational speeds directly affect the flow and the performance of the pump, it is essential to characterize the performance of the pump with a variable-pitch inducer at various rotational speeds. In this paper, the simulations and the experimental tests of a centrifugal pump with a variable-pitch inducer are designed and carried out under various rotational speed conditions. Navier-Stokes equations, coupled with a Reynolds average simulation approach, are used in the simulations. In the experimental tests, the external and anti-cavitation performances of the pump are investigated in a closed system. The following results are obtained from the simulations. Firstly, the velocity in the passage of the inducer rises with the increase of the rotational speed. Secondly, the static pressure escalates on the inducer and the impeller with the increase of the rotational speed. Thirdly, the static pressure distribution on the inducer and the impeller is asymmetric. Fourthly, the anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Additional results are gathered from an analysis of the experiments. H-Q curves are similar parabolas at various rotational speeds, while η-Q curves are similar parabolas only when n ≤6 000 r/min. The anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Finally, the simulation results are found to be consistent with the experimental results.
基金This work has been conducted under the project of“SFI Smart Maritime(237917/O30)-Norwegian Centre for im-proved energy-efficiency and reduced emissions from the mar-itime sector”that is partly funded by the Research Council of Norway.
文摘Statistical data analysis and visualization approaches to identify ship speed power performance under relative wind(i.e.apparent wind)profiles are considered in this study.Ship performance and navigation data of a selected vessel are analyzed,where various data anomalies,i.e.sensor related erroneous data conditions,are identified.Those erroneous data conditions are investigated and several approaches to isolate such situations are also presented by considering appropriate data visualization methods.Then,the cleaned data are used to derive various relationships among ship performance and navigation parameters that have been visualized in this study,appropriately.The results show that the wind profiles along ship routes can be used to evaluate vessel performance and navigation conditions by assuming the respective sea states relate to their wind conditions.Hence,the results are useful to derive appropriate mathematical models that represent ship performance and navigation conditions.Such mathematical models can be used for weather routing type applications(i.e.voyage planning),where the respective weather forecast can be used to derive optimal ship routes to improve vessel performance and reduce fuel consumption.This study presents not only an overview of statistical data analysis of ship performance and navigation data but also the respective challenges in data anomalies(i.e.erroneous data intervals and sensor faults)due to onboard sensors and data handling systems.Furthermore,the respective solutions to such challenges in data quality have also been presented by considering data visualization approaches.