The magnetization curves at 1.5 K and thermomagnetic curves for amorphous Fe_(90-x)Si_xZr_(10)(x=0,4,7 and 10)alloys prepared by the drum spinning technique have been measured with an extracting sample magnetometer.It...The magnetization curves at 1.5 K and thermomagnetic curves for amorphous Fe_(90-x)Si_xZr_(10)(x=0,4,7 and 10)alloys prepared by the drum spinning technique have been measured with an extracting sample magnetometer.It is obtained that the average magnetic moment,,per magnetic atom and Curie temperature,T_c,in the amorphous FeSiZr alloys increase with increasing Si content.The and T_c are found to be quite small,compared with amorphous FeSiB alloys.This unusual behavior is suggested to be due to the presence of the Fe—Fe antiferromagnetic interactions.The temperature dependence of magnetization at lower temperature is in accordance with Bloch's T^(3/2) law.Calculation shows that the spin wave stiffness constant,D,increases with increasing Si content from 0.37 meV·nm^2 for x=0 to 0.538 meV·nm^2 for x=10.The values of<r^2>indicate that the range of the exchange interaction is roughly the mean atomic distance of nearest neighbours.展开更多
文摘The magnetization curves at 1.5 K and thermomagnetic curves for amorphous Fe_(90-x)Si_xZr_(10)(x=0,4,7 and 10)alloys prepared by the drum spinning technique have been measured with an extracting sample magnetometer.It is obtained that the average magnetic moment,,per magnetic atom and Curie temperature,T_c,in the amorphous FeSiZr alloys increase with increasing Si content.The and T_c are found to be quite small,compared with amorphous FeSiB alloys.This unusual behavior is suggested to be due to the presence of the Fe—Fe antiferromagnetic interactions.The temperature dependence of magnetization at lower temperature is in accordance with Bloch's T^(3/2) law.Calculation shows that the spin wave stiffness constant,D,increases with increasing Si content from 0.37 meV·nm^2 for x=0 to 0.538 meV·nm^2 for x=10.The values of<r^2>indicate that the range of the exchange interaction is roughly the mean atomic distance of nearest neighbours.