The footprints that remain on the seabed after offshore jack-up platforms completed operations and moved out provide a significant risk for any futurej ack-up installation at that site. Detrimental horizontal and/or r...The footprints that remain on the seabed after offshore jack-up platforms completed operations and moved out provide a significant risk for any futurej ack-up installation at that site. Detrimental horizontal and/or rotational loads will be induced on the base cone of the jack-up platform leg (spudcan) in the preloading process where only vertical loads are normally expected. However, there are no specific guidelines on design of spudcan re-installation very close to or partially overlapping existing footprints. This paper presents a rational design approach for assessing spudcan-footprint interaction and the failure process of foundation in a single layer based on nonlinear finite element method. The rela- tionship between the distance between the spudcan and the footprint and the horizontal sliding force has been obtained. Comparisons of simulation and experimental results show that the model in this paper can deal well with the combined problems of sliding friction contact, fluid-solid coupling, and convergence difficulty. The analytical results may be useful to jack-up installation workovers close to existing footprints.展开更多
Reinstallation of mobile jack-up rigs next to existing footprints is a problematic operation because the spudcan located near the footprints is subjected to eccentric and/or inclined loading conditions. Geotech- nical...Reinstallation of mobile jack-up rigs next to existing footprints is a problematic operation because the spudcan located near the footprints is subjected to eccentric and/or inclined loading conditions. Geotech- nical centrifuge studies have measured these loads for combinations of changing footprint geometry, footprint soil properties and the offset of the reinstallation from the footprint centre. These tests have been of full model spudcans in order to accurately measure the combined loads developed. They have not provided information on the mechanisms of failure occurring during this complex installation. Ob- servations from a visualisation test, where a half spudcan is penetrated against a transparent window in a geotechnical centrifuge, are reported in this paper. The mechanisms of failure at different stages during the nenetrntirm are nr^nted展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51379214)the National Science and Technology Major Project (Grant No. 2011ZX05027-005-001)
文摘The footprints that remain on the seabed after offshore jack-up platforms completed operations and moved out provide a significant risk for any futurej ack-up installation at that site. Detrimental horizontal and/or rotational loads will be induced on the base cone of the jack-up platform leg (spudcan) in the preloading process where only vertical loads are normally expected. However, there are no specific guidelines on design of spudcan re-installation very close to or partially overlapping existing footprints. This paper presents a rational design approach for assessing spudcan-footprint interaction and the failure process of foundation in a single layer based on nonlinear finite element method. The rela- tionship between the distance between the spudcan and the footprint and the horizontal sliding force has been obtained. Comparisons of simulation and experimental results show that the model in this paper can deal well with the combined problems of sliding friction contact, fluid-solid coupling, and convergence difficulty. The analytical results may be useful to jack-up installation workovers close to existing footprints.
基金supported as a primary node of the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering(CE110001009)
文摘Reinstallation of mobile jack-up rigs next to existing footprints is a problematic operation because the spudcan located near the footprints is subjected to eccentric and/or inclined loading conditions. Geotech- nical centrifuge studies have measured these loads for combinations of changing footprint geometry, footprint soil properties and the offset of the reinstallation from the footprint centre. These tests have been of full model spudcans in order to accurately measure the combined loads developed. They have not provided information on the mechanisms of failure occurring during this complex installation. Ob- servations from a visualisation test, where a half spudcan is penetrated against a transparent window in a geotechnical centrifuge, are reported in this paper. The mechanisms of failure at different stages during the nenetrntirm are nr^nted