Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robus...Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.展开更多
This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ...This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).展开更多
The aim of this study is to carry out hydrothermal alteration mapping and structural mapping using ASTER images in order to identify indices that could guide mining exploration work in the Poli area and its surroundin...The aim of this study is to carry out hydrothermal alteration mapping and structural mapping using ASTER images in order to identify indices that could guide mining exploration work in the Poli area and its surroundings. To achieve this, the ASTER images were first preprocessed to correct atmospheric effects and remove vegetation influence. Secondly, a lineament mapping was conducted by applying Discrete Wavelet Transform (DWT) algorithms to the First Principal Component Analysis (PCA1) of Visible Near-Infrared (VNIR) and Shortwave Infrared (SWIR) bands. Lastly, band ratio methods were applied to the VNIR, SWIR, and Thermal Infrared (TIR) bands to determine indices of iron oxides/hydroxides (hematite and limonite), hydroxyl-bearing minerals (chlorite, epidote, and muscovite), and the quartz index. The results obtained showed that the lineaments were mainly oriented NE-SW, ENE-WSW, and E-W, with NE-SW being the most predominant direction. Concerning hydrothermal alteration, the identified indices covered almost the entire study area and showed a strong correlation with lithological data. Overlaying the obtained lineaments with the hydrothermal alteration indices revealed a significant correlation between existing mining indices and those observed in the field. Mineralized zones generally coincided with areas of high lineament density exhibiting significant hydrothermal alteration. Based on the correlation between existing mining indices and the results of hydrothermal and structural mapping, the results obtained can then be used as a reference document for any mining exploration in the study area.展开更多
Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a...Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open world.In real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera inconsistent.When low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR images.To address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification task.Firstly,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR images.Then,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various resolutions.Extensive qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach.展开更多
Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many...Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces.展开更多
The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract ...The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier.展开更多
Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by ...Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by the human cochlea in response to an external sound stimulus,as a biometric modality.TEOAE are robust to falsification attacks,as the uniqueness of an individual’s inner ear cannot be impersonated.In this study,we use both the raw 1D TEOAE signals,as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform(CWT).We use 1D and 2D Convolutional Neural Networks(CNN)for the former and latter,respectively,to derive the feature maps.The corresponding lower-dimensional feature maps are obtained using principal component analysis,which is then used as features to build classifiers using machine learning techniques for the task of person identification.T-SNE plots of these feature maps show that they discriminate well among the subjects.Among the various architectures explored,we achieve a best-performing accuracy of 98.95%and 100%using the feature maps of the 1D-CNN and 2D-CNN,respectively,with the latter performance being an improvement over all the earlier works.This performance makes the TEOAE based person identification systems deployable in real-world situations,along with the added advantage of robustness to falsification attacks.展开更多
基金partly supported by the National Natural Science Foundation of China(Jianhua Wu,Grant No.62041106).
文摘Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.
文摘This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).
文摘The aim of this study is to carry out hydrothermal alteration mapping and structural mapping using ASTER images in order to identify indices that could guide mining exploration work in the Poli area and its surroundings. To achieve this, the ASTER images were first preprocessed to correct atmospheric effects and remove vegetation influence. Secondly, a lineament mapping was conducted by applying Discrete Wavelet Transform (DWT) algorithms to the First Principal Component Analysis (PCA1) of Visible Near-Infrared (VNIR) and Shortwave Infrared (SWIR) bands. Lastly, band ratio methods were applied to the VNIR, SWIR, and Thermal Infrared (TIR) bands to determine indices of iron oxides/hydroxides (hematite and limonite), hydroxyl-bearing minerals (chlorite, epidote, and muscovite), and the quartz index. The results obtained showed that the lineaments were mainly oriented NE-SW, ENE-WSW, and E-W, with NE-SW being the most predominant direction. Concerning hydrothermal alteration, the identified indices covered almost the entire study area and showed a strong correlation with lithological data. Overlaying the obtained lineaments with the hydrothermal alteration indices revealed a significant correlation between existing mining indices and those observed in the field. Mineralized zones generally coincided with areas of high lineament density exhibiting significant hydrothermal alteration. Based on the correlation between existing mining indices and the results of hydrothermal and structural mapping, the results obtained can then be used as a reference document for any mining exploration in the study area.
基金supported by the National Natural Science Foundation of China(61471154,61876057)the Key Research and Development Program of Anhui Province-Special Project of Strengthening Science and Technology Police(202004D07020012).
文摘Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open world.In real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera inconsistent.When low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR images.To address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification task.Firstly,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR images.Then,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various resolutions.Extensive qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach.
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2022R1F1A1073375。
文摘Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces.
文摘The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier.
基金The authors would like to thank the Biometrics Security Laboratory of the University of Toronto for providing the Transient Evoked Otoacoustic Emissions(TEOAE)dataset.
文摘Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by the human cochlea in response to an external sound stimulus,as a biometric modality.TEOAE are robust to falsification attacks,as the uniqueness of an individual’s inner ear cannot be impersonated.In this study,we use both the raw 1D TEOAE signals,as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform(CWT).We use 1D and 2D Convolutional Neural Networks(CNN)for the former and latter,respectively,to derive the feature maps.The corresponding lower-dimensional feature maps are obtained using principal component analysis,which is then used as features to build classifiers using machine learning techniques for the task of person identification.T-SNE plots of these feature maps show that they discriminate well among the subjects.Among the various architectures explored,we achieve a best-performing accuracy of 98.95%and 100%using the feature maps of the 1D-CNN and 2D-CNN,respectively,with the latter performance being an improvement over all the earlier works.This performance makes the TEOAE based person identification systems deployable in real-world situations,along with the added advantage of robustness to falsification attacks.