期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Study on Galloping Stability Mechanism of Conductor and Its Application to Anti-Galloping of Transmission Lines 被引量:1
1
作者 YouChuanyong 《Electricity》 2005年第1期26-30,共5页
Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti... Galloping of conductor is a major hazard to safe operation of transmission lines. This paper introduces the basic galloping stability mechanism of conductor, design method of anti-galloping and the application of anti-galloping double pendulum and integral eccentric pendulum in China. Galloping stability mechanism of conductor was established based on vertical galloping mechanism developed by Den Hartog and torsional galloping mechanism developed by O. Nigel. A design method of anti-galloping was derived and anti-galloping double pendulum and integral eccentric pendulum were developed. Applications to several transmission lines including a 500 kV transmission line of large span indicated that they have played important roles in anti-galloping. 展开更多
关键词 galloping of conductor stability mechanism transmission line anti-galloping double pendulum integral eccentric pendulum
下载PDF
Effect and mechanism of reductive polyaniline on the stability of nitrocellulose
2
作者 Wenjiang Li Binbin Wang +5 位作者 Huimin Chen Aoao Lu Chenguang Li Qiang Li Fengqiang Nan Ping Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期217-225,共9页
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ... The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring. 展开更多
关键词 NITROCELLULOSE Green stabilizer POLYANILINE mechanism of stability
下载PDF
Reviewing and understanding the stability mechanism of halide perovskite solar cells 被引量:4
3
作者 Cai-Xin Zhang Tao Shen +3 位作者 Dan Guo Li-Ming Tang Kaike Yang Hui-Xiong Deng 《InfoMat》 SCIE CAS 2020年第6期1034-1056,共23页
Finding sustainable and renewable energy to replace traditional fossil fuel is critical for reducing greenhouse gas emission and avoiding environment pollution.Solar cells that convert energy of sunlight into electric... Finding sustainable and renewable energy to replace traditional fossil fuel is critical for reducing greenhouse gas emission and avoiding environment pollution.Solar cells that convert energy of sunlight into electricity offer a viable route for solving this issue.At present,halide perovskites are the most potential candidate materials for solar cell with considerable power conversion efficiency,whereas their stability remains a challenge.In this work,we summarize four different key factors that influence the stability of halide perovskites:(a)effect of environmental moisture on the degradation of halide perovskites.The performance of halide perovskite solar cells is reduced due to hydrated crystal hinders the diffusion of photo-generated carriers,which can be solved by materials encapsulation technique;(b)photoinduced instability.Through uncovering the underlying physical mechanism,we note that materials engineering or novel device structure can extend the working life of halide perovskites under continuous light exposure;(c)thermal stability.Halide perovskites are rapidly degraded into PbI2 and volatile substances as heating due to lower formation energy,whereas hybrid perovskite is little changed;(d)electric field effect in the degradation of halide perovskites.The electric field impacts significantly on the carrier separation,changes direction of photo-induced currents and generates switchable photovoltaic effect.For each key factor,we have shown in detail the underlying physical mechanisms and discussed the strategies to overcome this stability difficulty.We expect this review from both theoretical and experimental points of view can be beneficial for development of perovskite solar cell materials and promotes practical applications. 展开更多
关键词 ion diffusion perovskite solar cell stability mechanism
原文传递
Stability Mechanism of Laser-induced Fluorinated Super-hydrophobic Coating in Alkaline Solution
4
作者 Haoyang Li Yanling Tian Zhen Yang 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期113-125,共13页
Great attention has been focused on super-hydrophobic surfaces due to their fantastic applications.Fluoride chemicals are widely used to fabricate super-hydrophobic surfaces due to their convenience,simplicity,and hig... Great attention has been focused on super-hydrophobic surfaces due to their fantastic applications.Fluoride chemicals are widely used to fabricate super-hydrophobic surfaces due to their convenience,simplicity,and high efficiency.Previous research has made extensively efforts on corrosion resistance of fluorinated super-hydrophobic surfaces in corrosive media.Nevertheless,rare papers focused on the underlying reasons of anticorrosion property and stability mechanism on the fluorinated super-hydrophobic coatings in alkaline solution.Therefore,this work aims to reveal these mechanisms of fluorinated super-hydrophobic copper samples in strong alkaline solution(pH 13).Through the characterization of surface wettability and surface morphology,the laser-induced super-hydrophobic surface retained excellent stability after soaking in alkaline solution for 4 h.Through measurement of chemical compositions,the anticorrosion mechanism and stability mechanism of the fluorinated super-hydrophobic surface were proposed.Importantly,the hydroxyl ion(OH−)can further promote the hydrolysis reaction to improve the density and bonding strength of the fluoride molecules.Finally,the electrochemical experiments(PDP and EIS tests)were conducted to validate the rationality of our proposed conclusions. 展开更多
关键词 FLUORIDE Laser SUPER-HYDROPHOBICITY Alkaline corrosion stability mechanism
原文传递
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
5
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Acetylene hydrochlorination over supported ionic liquid phase(SILP)gold-based catalyst:Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms 被引量:7
6
作者 Jia Zhao Saisai Wang +9 位作者 Bolin Wang Yuxue Yue Chunxiao Jin Jinyue Lu Zheng Fang Xiangxue Pang Feng Feng Lingling Guo Zhiyan Pan Xiaonian Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期334-346,共13页
The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based support... The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination. 展开更多
关键词 Acetylene hydrochlorination Electron density Hydrogen chloride activation Stabilization mechanism Gold-based supported ionic liquid phase catalyst
下载PDF
Lithium nitrate regulated carbonate electrolytes for practical Li-metal batteries: Mechanisms, principles and strategies 被引量:3
7
作者 Kun Wang Wenbing Ni +9 位作者 Liguang Wang Lu Gan Jing Zhao Zhengwei Wan Wei Jiang Waqar Ahmad Miaomiao Tian Min Ling Jun Chen Chengdu Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期581-600,I0015,共21页
Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),l... Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),leading to the formation of unstable solid electrolyte interphase(SEI)and the breed of Li dendrites/dead Li.Significantly,lithium nitrate(LiNO_(3)),an excellent film-forming additive,proves crucial to construct a robust Li_(3)N/Li_(2)O/Li_(x)NO_(y)-rich SEI after combining with ether-based electrolytes.Thus,the given challenge leads to natural ideas which suggest the incorporation of LiNO_(3) into commercial carbonate for practical LMBs.Regrettably,LiNO_(3) demonstrates limited solubility(~800 ppm)in commercial carbonate electrolytes.Thence,developing stable SEI and dendrite-free LMA with the incorporation of LiNO_(3) into carbonate electrolytes is an efficacious strategy to realize robust LMBs via a scalable and cost-effective route.Therefore,this review unravels the grievances between LMA,LiNO_(3)and carbonate electrolytes,and enables a comprehensive analysis of LMA stabilizing mechanism with LiNO_(3),dissolution principle of LiNO_(3) in carbonate electrolytes,and LiNO_(3) introduction strategies.This review converges attention on a point that the LiNO_(3)-introduction into commercial carbonate electrolytes is an imperious choice to realize practical LMBs with commercial 4 V layered cathode. 展开更多
关键词 Li-metal battery Carbonate electrolyte Lithium nitrate Stabilization mechanism Dissolution principle Introduction strategy
下载PDF
Mechanism of progressive failure of a slope with a steep joint under the action of freezing and thawing:model test 被引量:3
8
作者 LI Cong ZHANG Rong-tang +6 位作者 ZHU Jie-bing LU Bo SHEN Xiao-ke WANG Xiao-wei LIU Jie-sheng WU Liang-liang ZHANG Xin-zhou 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2999-3012,共14页
The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics... The stability of slope rock masses is influenced by freeze-thaw cycles in cold region,and the mechanism of stability deterioration is not clear.In order to understand the damage and progressive failure characteristics of rock masses under the action of freezing and thawing,a model test was conducted on slope with steep joint in this study.The temperature,frost heaving pressure and deformation of slope rock mass were monitored in real-time during the test and the progressive failure mode was studied.The experimental results show that the temperature variations of cracking and the rock mass of a slope are different.There are obvious latent heat stages in the temperature-change plot in the crack,but not in the slope rock masses.The frost heaving effect in the fracture is closely related to the constraint conditions,which change with the deformation of the fracture.The frost heaving pressure fluctuates periodically during freezing and continues to decrease during thawing.The surface deformation of the rock mass increases during freezing,and the deformation is restored when it thaws.Freeze-thaw cycling results in residual deformation of the rock mass which cannot be fully restored.Analysis shows that the rock mass at the free side of the steep-dip joint rotates slightly under the frost heaving effect,causing fracture propagation.The fracture propagation pattern is a circular arc at the beginning,then extends to the possible sliding direction of the rock mass.Frost heaving force and fracture water pressure are the key factors for the failure of the slope,which can cause the crack to penetrate the rock mass,and a landslide ensues when the overall anti-sliding resistance of the rock mass is overcome. 展开更多
关键词 Rock slope Fractured rock mass Freeze-thaw cycle Model experiment stability degradation mechanism Failure mode
下载PDF
Stabilization Mechanism of Calcium Lignosulphonate Used in Expansion Sensitive Soil 被引量:2
9
作者 WU Dajiang SHE Weil +4 位作者 WEI Luansu ZUO Wenqiang' HU Xiangyu HONG Jinxiang MIAO Changwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期847-855,共9页
A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium ligno... A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium lignosulphonate showed 56.5%increased 28 days unconfined compressive strength and 23.8%decreased free expansion rate.The X-ray diffraction analysis results indicate the existence of cation exchange and the reduction of montmorillonite interplanar spacing.The X-computed tomography results demonstrate that calcium lignosulphonate decreased the porosity and optimized the pore distribution.The calcium lignosulphonate also increased the stability of the suspension system according to the Zeta potential results.Moreover,the results of rheological tests show that the moderate amount of calcium lignosulphonate enhanced the yield stress and the plastic viscosity,proving the formation of a strong connection between soil particles. 展开更多
关键词 calcium lignosulphonate expansive soil mechanical characteristic stabilization mechanism
下载PDF
Preparation and stabilization mechanism of carbon dots nanofluids for drag reduction 被引量:1
10
作者 Yi-Ning Wu Yuan Li +3 位作者 Meng-Jiao Cao Cai-Li Dai Long He Yu-Ping Yang 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1717-1725,共9页
During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potent... During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potential in oil fields for reducing injection pressure and augmenting oil recovery.However,carbon dots characterized of small size,high surface energy are faced with several challenges,such as self-aggregation and settling.The preparation of stably dispersed carbon dots nanofluids is the key factor to guarantee its application performance in formation.In this work,we investigated the stability of hydrophilic carbon dots(HICDs)and hydrophobic carbon dots-Tween 80(HOCDs)nanofluids.The influences of carbon dots concentration,sorts and concentration of salt ions as well as temperature on the stability of CDs were studied.The results showed that HICDs are more sensitive to sort and concentration of salt ions,while HOCDs are more sensitive to temperature.In addition,the core flooding experiments demonstrated that the pressure reduction rate of HICDs and HOCDs nanofluids can be as high as 17.88%and 26.14%,respectively.Hence,the HICDs and HOCDs nanofluids show a good application potential in the reduction of injection pressure during the development of low and ultra-low permeability oil resources. 展开更多
关键词 Carbon dots Nanofluids Drag reduction Stabilization mechanism Salt tolerance
下载PDF
Curing Kinetics, Mechanical Properties and Thermal Stability of Epoxy/Graphene Nanoplatelets(GNPs) Powder Coatings 被引量:4
11
作者 智茂永 黄婉霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1155-1161,共7页
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b... Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability. 展开更多
关键词 epoxy powder coating graphene nanoplatelets(GNPs) toughening mechanism thermal stability
下载PDF
Effects of the precipitation of stabilizers on the mechanism of grain fracturing in a zirconia metering nozzle 被引量:2
12
作者 Liang Zhao Qun-hu Xue Dong-hai Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第9期1041-1047,共7页
The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied ... The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied using an X-ray fluorescence analyzer, scanning electron microscope, and electron probe. Results revealed that the composition, structure, and mineral phase of the original layer, transition layer, and affected layer of the metering nozzle differed because of stabilizer precipitation and steel slag permeation. The stabilizer MgO formed low-melting phases with steel slag and impure SiO2 on the boundaries(pores) of zirconia grains; consequently, grain fracturing occurred and accelerated damage to the metering nozzle was observed. 展开更多
关键词 continuous casting metering nozzle partially stabilized zirconia grains fracture mechanisms electron probe microanalysis
下载PDF
Mechanical and thermodynamical stability of BiVO4 polymorphs using first-principles study
13
作者 A K M Farid UI Islam Md Nurul Huda Liton +2 位作者 H M Tariqul Islam Md Al Helal Md Kamruzzaman 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期395-403,共9页
First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the gen... First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the flame of density functional theory (DFT). The calculated structural and electronic properties are consistent with the previous theoretical and experimental results. The electronic structures reveal that m-BiVO4, op- BiVO4, and st-BiVO4 have indirect band gaps, on the other hand, zt-BiVO4 has a direct band gap. From the DOS and Mulliken's charge analysis, it is observed that only m-BiVO4 has 6s2 Bi lone pair. Bond population analysis indicates that st-BiVO4 shows a more ionic nature and a similar result is obtained from the elastic properties. From the elastic prop- erties, it is observed that st-BiVO4 is more mechanically stable than the others, st-BiVO4 is more ductile and useful for high electro-optical and electro-mechanical coupling devices. Our calculated thermodynamic properties confirm the similar characteristics found from electronic and elastic properties, m-BiVO4 is useful as photocatalysts, solid state electrolyte, and electrode and other polymorphs are applicable in electronic device fabrications. 展开更多
关键词 BIVO4 crystal structure lone pair mechanical stability
下载PDF
Utilizing hybrid faradaic mechanism via catalytic and surface interactions for high-performance flexible energy storage system
14
作者 Dong-Gyu Lee Hyeonggeun Choi +9 位作者 Yeonsu Park Min-Cheol Kim Jong Bae Park Suok Lee Younghyun Cho Wook Ahn A-Rang Jang Jung Inn Sohn John Hong Young-Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期541-548,I0013,共9页
Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additio... Improving the capacitance and energy density is a significant challenge while developing practical and flexible energy storage system(ESS).Redox mediators(RMs),as redox-active electrolyte additives,can provide additional energy storing capability via electrochemical faradaic contribution on electrodes for high-performance flexible ESSs.Particularly,determining effective material combinations between electrodes and RMs is essential for maximizing surface faradaic redox reactions for energy-storage performance.In this study,an electrode-RM system comprising heterostructured hybrid(carbon fiber(CF)/MnO_(2)) faradaic electrodes and iodine RMs(I-RMs) in a redox-active electrolyte is investigated.The CF/MnO_(2)with the 1-RMs(CF/MnO_(2)-I) induces dominant catalytic faradaic interaction with the I-RMs,significantly enhancing the surface faradaic kinetics and increasing the overall energy-storage performance.The CF/MnO_(2)-I ESSs show a 12.6-fold(or higher) increased volumetric energy density of 793.81 mWh L^(-1)at a current of 10 μA relative to ESSs using CF/MnO_(2)without I-RMs(CF/MnO_(2)).Moreover,the CF/MnO_(2)-I retains 93.1% of its initial capacitance after 10,000 cycles,validating the excellent cyclability.Finally,the flexibility of the ESSs is tested at different bending angles(180° to 0°),demonstrating its feasibility for flexible and high-wear environments.Therefore,CF/MnO_(2)electrodes present a practical material combination for high-performance flexible energy-storage devices owing to the catalytic faradaic interaction with I-RMs. 展开更多
关键词 Energy storage system Redox mediators Faradaic electrodes Catalytic interactions Mechanical stability
下载PDF
Running Temperature and Mechanical Stability of Grease as Maintenance Parameters of Railway Bearings
15
作者 Jan Lundberg Aditya Parida Peter Sderholm 《International Journal of Automation and computing》 EI 2010年第2期160-166,共7页
Spherical roller bearings in railway car wheels are critical components whose failure may have catastrophic consequences. The present study aims to analyse the mechanical stability of greases and temperature of bearin... Spherical roller bearings in railway car wheels are critical components whose failure may have catastrophic consequences. The present study aims to analyse the mechanical stability of greases and temperature of bearings as indicators for condition-based bearing maintenance. The performed case study includes nine fully-formulated commercial greases examined in the wheel bearings of five ore cars operated in northern Scandinavia. The studied ore cars travelled a distance of about 300 000 km during a period of three years. Small samples of the greases were taken on eight occasions to test their mechanical stability. In addition, the temperatures of the bearings were continuously recorded. After the test period, the wear, electrical damage, and corrosion of the bearings were examined. One of the findings is that the shear stress of the grease at a certain shear velocity (the certain yieldstress (CEY) value) is a good maintenance indicator and is highly dependent on the grease type. The bearing's wear, electrical damage and corrosion also depend on the grease type. However, no oxidation of the greases was identified. The paper also outlines a systematic methodology to determine an overall maintenance indicator for railway roller bearings which is based on the field measurements. 展开更多
关键词 Maintenance mechanical stability RAILWAY roller bearings grease lubrication.
下载PDF
The role of microstructure and its stability in performance of wheels in heavy haul service
16
作者 Cong Qiu John Cookson Peter Mutton 《Journal of Modern Transportation》 2017年第4期261-267,共7页
Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage... Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage during their first service life.Such damage can incur heavy machining penalties or even premature scrapping of wheels.The combination of high contact stresses as well as substantial thermal loading(such as during prolonged periods of tread braking) can lead to severe plastic deformation,thermal fatigue and microstructural deterioration.For some high-strength wheel grades,the increased sensitivity to thermo-mechanical damage observed during the first service period may be attributed to the presence of a near-surface region in which the microstructure is more sensitive to these loading conditions than the underlying material.The standards applicable to wheels used in Australian heavy haul operations are based on the Association of American Railroads(AAR) specification M-107/M-208,which does not include any requirements for microstructure.The implementation of acceptance criteria for the microstructure,in particular that in the near-surface region of the wheel,may be necessary when new wheels are purchased.The stability of wheel microstructures during thermo-mechanical loading and the effects of alloying elements commonly used in wheel manufacturing are reviewed.A brief guide to improving thermal/mechanical stability of the microstructure is also provided. 展开更多
关键词 Heavy haul wheels Wheel damage MICROSTRUCTURE Thermal/mechanical stability Alloying effect
下载PDF
Mechanical Property Stability of Cu-Mo-Ni Alloyed Austempered Ductile Iron
17
作者 LIU Sheng-fa WANG Zhong-fan 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第5期34-38,共5页
The aim of present work is to investigate the influencing factors on mechanical property stability of Cu-Mo-Ni alloyed austempered ductile iron (ADI). The results show that after austenitized at 900℃ for 2 h follow... The aim of present work is to investigate the influencing factors on mechanical property stability of Cu-Mo-Ni alloyed austempered ductile iron (ADI). The results show that after austenitized at 900℃ for 2 h followed by austempered at 370℃for another 2 h, the mechanical property of the alloyed ADI can reach the Germanite GGG-100 standard, i.e. σb≮1000 MPa,δ≮5%, at 95% confidence level. And the satisfactory mechanical properties were obtained when the alloyed ADI was austenitized at 850℃ to 1 000 ℃ for 1-4 h, and austempered at 355℃ to 400℃ for another 1 h to 4 h. The microstructures, including nodule number, white bright zone content (martensite-containing interdendritic segregation zone) and retained austenite content, can significantly influence the mechanical properties of the ADI. In order to obtain the good combinations of strength and ductility, the volume fraction of white bright zone should he less than 5%, and the retained austenite contents maintain hetween 30 % and 40%. The application of inoculation techniques to increase graphite nodule number can effectively reduce the white bright zone content in the structure. 展开更多
关键词 Cu-Mo-Ni alloyed austempered ductile iron mechanical property stability
下载PDF
Synthesis of ZnO quantum dots and their agglomeration mechanisms along with emission spectra based on ageing time and temperature
18
作者 乔泊 赵谡玲 +1 位作者 徐征 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期149-152,共4页
The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.T... The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect,while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs.The stability of ZnO QDs was studied with different dispersion degrees at 0?C and at room temperature of 25?C.The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time.With the ageing of Zn O QDs,the agglomeration is aggravated and the surface defects increase,which leads to the defect emission. 展开更多
关键词 ZnO quantum dots quantum blue shift agglomeration mechanism stability
下载PDF
Oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:3
19
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2429-2437,共9页
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ... Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed. 展开更多
关键词 aluminum foam gas injection foaming process oxide film foam stability mechanism
下载PDF
Rare Earth Stearates as Thermal Stabilizers for Rigid Poly(vinyl chloride) 被引量:16
20
作者 郑玉婴 蔡伟龙 +2 位作者 傅明连 王灿耀 张星 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第2期172-177,共6页
A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The res... A series of stearates with different rare-earth ion were investigated as thermal stabilizers for rigid PVC at 180 ℃ in air. Their stabilizing efficiency was based on measuring the rate of dehydrochlorination. The resulted revealed the higher stabilizing efficiency of the investigated rare-earth stearates as thermal stabilizers for rigid PVC compared with the thermal stabilizers for industry: calcium stearate, zinc stearate, butyl stannum mercaptide, phosphite esters, β-diketone and epoxidized sunflower oil. This was well illustrated by longer incubation period (T_S) values and lower rate of dehydrochlorination. The stable efficiency was affected by the nature of rare-earth element's individual electronic shell. The mechanism for the stabilizing effect of rare-earth stearates was proposed. The result was experimentally proved based on IR spectrum. 展开更多
关键词 poly(vinyl chloride) thermal dehydrochlorination rare-earth stearates stabilization mechanism conductivity method congo red test
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部