期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Characteristics of Dry and Wet Climate in Shandong Province Based on Standardized Precipitation Index
1
作者 Ningxin ZHANG Fengling ZENG Fang LI 《Meteorological and Environmental Research》 2024年第3期6-15,共10页
Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morl... Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morlet wavelet analysis were used to analyze the change trend and temporal and spatial distribution characteristics of SPI index in the past 52 years.The results show that there were more normal years in Shandong Province,and the frequency reached 38.46%.There was severe drought in the 1980s and more wet years after 2003.SPI index showed an upward trend in spring,summer and winter but a weak arid trend in autumn.In addition,intense dry weather was more frequent in summer.Spatially,the climate was normal or humid in most areas of Shandong Province.The regions with more wet years were located in the central and northeast Shandong and the peninsula,while the climate was normal in the southwest and north of Shandong.The areas with more dry years were mainly located in the northwest of Shandong Province.There was mainly local and global drought in Shandong Province,and the arid area showed a decreasing trend.In the past 52 years,Shandong Province experienced quasi-4 times of alternation between dry and wet climate.The long period of 21 a was the first main period,and the climate would be still wet in Shandong Province in the future.In terms of mutation,the climate in Shandong Province became humid after 2003,and 2003 was the mutation point.After the abrupt change,the climate changed from gradually drying to wetting. 展开更多
关键词 standardized precipitation index Shandong Province Dry and wet climate characteristics Trend analysis
下载PDF
Meteorological Drought Detection and Forecast Using Standardized Precipitation Index and Univariate Distribution Models: Case Study of Bamako, Mali
2
作者 Alikalifa Sanogo Prince Appiah Owusu +3 位作者 Roland Songotu Kabange Bakary Issa Djire Racheal Fosu Donkoh Nasser Dia 《Journal of Geoscience and Environment Protection》 2023年第7期30-55,共26页
As an extended period of unusually dry weather conditions without sufficient rain, drought poses enormous risk on societies. Characterized by the absence of precipitation for long periods of time, often resulting in w... As an extended period of unusually dry weather conditions without sufficient rain, drought poses enormous risk on societies. Characterized by the absence of precipitation for long periods of time, often resulting in water scarcity, droughts are increasingly posing significant environmental challenges. Drought is therefore considered an important element in the management of water resources, especially groundwater resources during drought. This study therefore sought to investigate the rainfall variability and the frequency of drought for the period 1991 to 2020 in Bamako based on monthly rainfall data from Bamako-Senou gauge station. The standardized precipitation index (SPI) for 12-month, 6-month and 3-month timescales and the SPI for annual totals were used to characterized drought in the study area (Bamako). Univariate parametric probability distributions such as Normal, Log-normal, Gumbel type I and Pearson type III (P3) distributions were fitted with drought variables (severity and duration) for future planning and management. Non-parametric test such as Mann-Kendall trend test was also used to detect trend in annual rainfall data. The results showed that based on 12-month SPI, Bamako experienced two (02) extreme droughts one in July 2002 (SPI = -2.2165) and another in June 2015 (SPI = -2.0598 QUOTE SPI=-2.0598 ). Drought years represented 46.67% for the overall periods according to the SPI for annual totals. The result further indicated that based on the goodness of fit test, the P3 distribution represents the best fitted distribution to both drought severity and duration over Bamako. Bamako is expected to experience several severe severities with higher and shorter duration in the future. Severities with 1, 2, 6, and 10-month duration had return periods ranged from 2.4 to 3.8 years, while 5, 10, 20, 25, 50, and 100-year return periods had 18.51, 26.08, 33.25, 35.50, 42.38, and 49.14 severities, respectively, and durations associated to these severities were 19.8, 26.9, 33.5, 35.6, 42, and 48.2 months, respectively. 展开更多
关键词 standardized precipitation index (SPI) Rainfall Variability Univariate Proba-bility Distribution DROUGHT BAMAKO
下载PDF
Spatio-Temporal Analysis of Drought in the North-Eastern Coastal Region of Vietnam Using the Standardized Precipitation Index (SPI)
3
作者 Nguyen Van Tuan Nguyen Van Hieu +5 位作者 Nguyen Khac Bang Pham Hoang Hai Nguyen Khanh Van Le Vinh Ha Tran Thi Hoa Lê Trọng Hiếu 《Atmospheric and Climate Sciences》 CAS 2023年第2期175-200,共26页
Spatio-temporal analysis of drought provides valuable information for drought management and damage mitigation. In this study, the Standardized Precipitation Index at the time scale of 6 months (SPI-6) is selected to ... Spatio-temporal analysis of drought provides valuable information for drought management and damage mitigation. In this study, the Standardized Precipitation Index at the time scale of 6 months (SPI-6) is selected to reflect drought conditions in the North-Eastern coastal region of Vietnam. The drought events and their characteristics from 1981 to 2019 are detected at 9 meteorological stations and 10 Chirps rainfall stations. The spatio-temporal variation of drought in the study region is analyzed on the basis of the number, duration, severity, intensity, and peak of the detected drought events at the 19 stations. The results show that from 1981 to 2019 the drought events mainly occurred with 1-season duration and moderate intensity and peak. The number, duration, severity, and peak of the drought events were the greatest in the period 2001-2010 and were the smallest in the period 2011-2019. Among the 19 stations, the drought duration tends to decrease at 11 stations, increase at 7 stations, and has a slight variant at 1 station;the drought severity tends to decrease at 14 stations, increase at 4 stations, and has not a significant trend at 1 station;the drought intensity tends to decrease at 17 stations, increase at 1 station, and has a slight variant at 1 station;and the drought peak tends to decrease at 18 stations and increase at 1 station. 展开更多
关键词 Spatio-Temporal Analysis of Drought standardized precipitation index (SPI) Drought Characteristics
下载PDF
Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index 被引量:1
4
作者 Ayad M F AL-QURAISHI Heman A GAZNAYEE Mattia CRESPI 《Journal of Arid Land》 SCIE CSCD 2021年第4期413-430,共18页
Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdi... Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdistan Region(IKR)is located in the north of Iraq,which has also suffered from extreme drought.In this study,the drought severity status in Sulaimaniyah Province,one of four provinces of the IKR,was investigated for the years from 1998 to 2017.Thus,Landsat time series dataset,including 40 images,were downloaded and used in this study.The Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index(NDWI)were utilized as spectral-based drought indices and the Standardized Precipitation Index(SPI)was employed as a meteorological-based drought index,to assess the drought severity and analyse the changes of vegetative cover and water bodies.The study area experienced precipitation deficiency and severe drought in 1999,2000,2008,2009,and 2012.Study findings also revealed a drop in the vegetative cover by 33.3%in the year 2000.Furthermore,the most significant shrinkage in water bodies was observed in the Lake Darbandikhan(LDK),which lost 40.5%of its total surface area in 2009.The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK(correlation coefficients of 0.92 and 0.72,respectively).The relationship between SPI and NDVI-based vegetation cover was positive but not significant.Low precipitation did not always correspond to vegetative drought;the delay of the effect of precipitation on NDVI was one year. 展开更多
关键词 climate change DROUGHT Normalized Difference Vegetation index(NDVI) Normalized Difference Water index(NDWI) standardized precipitation index(SPI) delay effect
下载PDF
Drought and flood characteristics in the farmingpastoral ecotone of northern China based on the Standardized Precipitation Index 被引量:1
5
作者 CAO Huicong YAN Dandan JU Yuelin 《Journal of Arid Land》 SCIE CSCD 2021年第12期1244-1259,共16页
The farming-pastoral ecotone of northern China(FPENC)provides an important ecological barrier which restrains the invasion of desert into Northwest China.Studying drought and flood characteristics in the FPENC can pro... The farming-pastoral ecotone of northern China(FPENC)provides an important ecological barrier which restrains the invasion of desert into Northwest China.Studying drought and flood characteristics in the FPENC can provide scientific support and practical basis for the protection of the FPENC.Based on monthly precipitation data from 115 meteorological stations,we determined the changes in climate and the temporal and spatial variations of drought and flood occurrence in the FPENC during 1960-2020 using the Standardized Precipitation Index(SPI),Morlet wavelet transform,and inverse distance weighted interpolation method.Annual precipitation in the FPENC showed a slightly increasing trend from 1960 to 2020,with an increasing rate of about 1.15 mm/a.The interannual SPI exhibited obvious fluctuations,showing an overall non-significant upward trend(increasing rate of 0.02/a).Therefore,the study area showed a wetting trend in recent years.Drought and flood disasters mainly occurred on an interannual change cycle of 2-6 and 9-17 a,respectively.In the future,a tendency towards drought can be expected in the FPENC.The temporal and spatial distribution of drought and flood differed in the northwestern,northern,and northeastern segments of the FPENC,and most of the drought and flood disasters occurred in local areas.Severe and extreme drought disasters were concentrated in the northwestern and northeastern segments,and severe and extreme flood disasters were mainly in the northeastern segment.Drought was most frequent in the northwestern segment,the central part of the northeastern segment,and the northern part of the northern segment.Flood was most frequent in the western part of the northwestern segment,the eastern part of the northeastern segment,and the eastern and western parts of the northern segment.The accurate evaluation of the degrees of drought and flood disasters in the FPENC will provide scientific basis for the regional climate study and critical information on which to base decisions regarding environmental protection and socio-economic development in this region. 展开更多
关键词 farming-pastoral ecotone of northern China(FPENC) standardized precipitation index(SPI) DROUGHT FLOOD Morlet wavelet transform
下载PDF
Characteristics of Drought and Humidification Based on Standardized Precipitation Index in Weifang City during the Past 50 Years 被引量:1
6
作者 李树军 袁静 +1 位作者 肖清华 董晨娥 《Agricultural Science & Technology》 CAS 2012年第4期861-866,共6页
[Objective] This study aimed to analyze the evolution characteristics and occurrence patterns of droughts and floods in Weifang City. [Method] Based on the monthly precipitation data during 1961-2010 obtained from nin... [Objective] This study aimed to analyze the evolution characteristics and occurrence patterns of droughts and floods in Weifang City. [Method] Based on the monthly precipitation data during 1961-2010 obtained from nine meteorological sta- tions of Weifang City, by using standardized precipitation index, monthly SPI index of Weifang City during the past 50 years was calculated to analyze the spatial and temporal distribution characteristics of drought and humidification in Weifang City. [Result] The results showed that the variation of drought and humidification had stage characteristics in Weifang City, which was relatively humid in the 1960s and 1970s and developed from extremely humid in early 1960s to dry in late 1970s, persistent drought was observed throughout the range of Weifang City in the 1980s, and the variation tended to be smooth during the 1990s-2000s. Spatial distribution of drought and humidification in Weifang City showed certain regional characteristics. In the 1960s, the mid-west region of Weifang City was relatively humid, while the southeastern region was relatively dry; in the 1970s, there was little difference among the drought and humidification extent in each region; in the 1980s, each region of Weifang City was generally dry, specifically, drought in the southeastern region was the most severe, while drought in the northern region was the slightest; in the 1990s and 2000s, variation of drought and humidification in each region of Weifang City was basically the same. The uneven spatial and temporal distribution of precipi- tation led to abnormal distribution of drought and humidification in some areas, such as the abnormal phenomenon in 1999; the spatial distribution of drought and humidi- fication duration in each generation had their own characteristics, which brought diffi- culties to the unified deployment of drought and flood control departments. [Conclu- sion] This study provided theoretical basis for the drought resistance, waterlogging prevention and disaster reduction in Weifang City under the background of climate change. 展开更多
关键词 standardized precipitation index DROUGHT HUMIDIFICATION Spatial and temporal characteristics
下载PDF
Drought analysis using multi-scale standardized precipitation index in the Han River Basin,China 被引量:1
7
作者 Yue-ping XU Sheng-ji LIN +2 位作者 Yan HUANG Qin-qing ZHANG Qi-hua RAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第6期483-494,共12页
Regional drought analysis provides useful information for sustainable water resources management.In this paper,a standardized precipitation index(SPI) at multiple time scales was used to investigate the spatial patter... Regional drought analysis provides useful information for sustainable water resources management.In this paper,a standardized precipitation index(SPI) at multiple time scales was used to investigate the spatial patterns and trends of drought in the Han River Basin,one of the largest tributaries of Yangtze River,China.It was found that,in terms of drought severity,the upper basin of the Han River is the least,while the growing trend is the most conspicuous;a less conspicuous growing trend can be observed in the middle basin;and there is an insignificant decreasing trend in the lower basin.Meanwhile,the impact of drought on the Middle Route of the South-to-North Water Transfer Project was investigated,and it is suggested that water intake must be reduced in times of drought,particularly when successive or simultaneous droughts in the upper and middle basins of the Han River Basin occur.The results can provide substantial information for future water allocation schemes of the South-to-North Water Transfer Project. 展开更多
关键词 Multi-scale standardized precipitation index(SPI) South-to-North Water Transfer Project Spatial patterns Mann-Kendal Han River Basin
原文传递
Spatio-Temporal Characteristics of Standardized Precipitation Index in the Taihu Basin during 1951-2000
8
作者 LIU Xingcai XU Zongxue LIU Bo 《Wuhan University Journal of Natural Sciences》 CAS 2009年第6期518-524,共7页
Spatial and temporal characteristics of standardized precipitation index (SPI), which is widely used for drought/flood monitoring, are investigated in this study. The purpose is to obtain a reasonable primary scheme... Spatial and temporal characteristics of standardized precipitation index (SPI), which is widely used for drought/flood monitoring, are investigated in this study. The purpose is to obtain a reasonable primary scheme of zoning on the basis of drought/ wetness conditions in the study area. Spatio-temporal distributions of SPI with the time scales of 3 months and 12 months are investigated with the datasets of precipitation in the Taihu basin during past decades (1951-2000). Results indicate that SPI series of 3 months show random fluctuation while that of 12 months behaves like I/f noise. SPI series of 3 months show little trend while that of 12 months show significant trend at several stations. Drought magnitude (DM) is also estimated on the basis of SPI values to assess drought condition. No trend is detected in DMs with time scales of both 3 months and 12 months. Spatial variability of DM is analyzed by mapping the DM with 12 months for extreme drought and wetness, and regional characteristics are analyzed for DM. 展开更多
关键词 spatio-temporal distribution Taihu basin standardized precipitation index time scale ZONING
原文传递
Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal 被引量:1
9
作者 Nirmal M DAHAL XIONG Donghong +6 位作者 Nilhari NEUPANE Belayneh YIGEZ ZHANG Baojun YUAN Yong Saroj KOIRALA LIU Lin FANG Yiping 《Journal of Arid Land》 SCIE CSCD 2021年第5期433-454,共22页
Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors,especially in developing countries.This study attempts to examine the spatial and temporal characteristics of drought a... Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors,especially in developing countries.This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin(KRB)in Nepal,using the standardized precipitation evapotranspiration index(SPEI)over the period from 1987 to 2017.The Mann-Kendall test was used to explore the trends of the SPEI values.The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period.Spatially,the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales,especially in summer and winter.The mountain region also showed a significant increasing drought trend in winter.The drought characteristic analysis indicated that the maximum duration,intensity,and severity of drought events were observed in the KRB after 2000.The Terai region presented the highest drought frequency and intensity,while the hill region presented the longest maximum drought duration.Moreover,the spatial extent of drought showed a significant increasing trend in the hill region at the monthly(drought station proportion of 7.6%/10 a in August),seasonal(drought station proportion of 7.2%/10 a in summer),and annual(drought station proportion of 6.7%/10 a)scales.The findings of this study can assist local governments,planners,and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts. 展开更多
关键词 drought duration drought intensity drought severity standardized precipitation evapotranspiration index mountains hills Terai
下载PDF
Effects of temperature and precipitation on drought trends in Xinjiang, China
10
作者 YANG Jianhua LI Yaqian +3 位作者 ZHOU Lei ZHANG Zhenqing ZHOU Hongkui WU Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第8期1098-1117,共20页
The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and pre... The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought. 展开更多
关键词 standardized precipitation evapotranspiration index(SPEI) climate change drought characteristics trend analysis arid area temperature trend contribution analysis
下载PDF
A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains
11
作者 LIU Xinyu LI Xuemei +2 位作者 ZHANG Zhengrong ZHAO Kaixin LI Lanhai 《Journal of Arid Land》 SCIE CSCD 2024年第2期195-219,共25页
Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan M... Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan Mountains(CTM)have a high climate sensitivity,rendering the region particularly vulnerable to the effects of climate warming.In this study,we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset(1961-2014)and 24 global climate models(GCMs)of the Coupled Model Intercomparison Project Phase 6(CMIP6)to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale.Based on this,we conducted a systematic review of the interannual trends,dry-wet transitions(based on the standardized precipitation index(SPI)),and spatial distribution patterns of climate change in the CTM during 1961-2014.We further projected future temperature and precipitation changes over three terms(near-term(2021-2040),mid-term(2041-2060),and long-term(2081-2100))relative to the historical period(1961-2014)under four shared socio-economic pathway(SSP)scenarios(i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).It was found that the CTM had experienced significant warming and wetting from 1961 to 2014,and will also experience warming in the future(2021-2100).Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble(MME)from the CMIP6 GCMs.The MME simulation results indicated an apparent wetting in 2008,which occurred later than the wetting observed from the CN05.1 in 1989.The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM.Warming and wetting are more rapid in the northern part of the CTM.By the end of the 21st century,all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions.However,the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future,so the nature of the drought in the CTM will not change at all.Additionally,the projected summer precipitation shows negative correlation with the radiative forcing.This study holds practical implications for the awareness of climate change and subsequent research in the CTM. 展开更多
关键词 climate change Coupled Model Intercomparison Project Phase 6(CMIP6) global climate models(GCMs) shared socio-economic pathway(SSP)scenarios standardized precipitation index(SPI) Chinese Tianshan Mountains
下载PDF
Spatio-Temporal Agricultural Drought Quantification in a Rainfed Agriculture, Athi-Galana-Sabaki River Basin
12
作者 Joe Ndundi Tete Godfrey Ouma Makokha +2 位作者 Oscar Owino Ngesa John Ngugi Muthami Bonface Wabwire Odhiambo 《Journal of Geographic Information System》 2024年第4期201-226,共26页
This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variatio... This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins. 展开更多
关键词 Agricultural Drought Food Security standardized precipitation index standardized Agricultural
下载PDF
Levant Drought Occurrence, Lebanon Case
13
作者 Ihab Jomaa Mariam Choker +3 位作者 Nisrine El Haj Marie Therese Abi Saab Matteo Funaro Simone Mereu 《Atmospheric and Climate Sciences》 2024年第1期118-127,共10页
Rainfall data is probably one of the longest-recorded climatic parameters in Lebanon. On the central coast of Lebanon, the Beirut weather station started collecting rainfall data in 1876. However, the recorded data is... Rainfall data is probably one of the longest-recorded climatic parameters in Lebanon. On the central coast of Lebanon, the Beirut weather station started collecting rainfall data in 1876. However, the recorded data is not available at one data provider source. Published data is found in historical documents but it reaches the early 1970s and then appears a data gap till 1990. Still the data is available, but it might be found to be saved privately. This study investigated the SPI variability on annual time scale between the years 1876 and 2021. The SPI was computed using R-Stat software to compare every year between 1876 and 2021. The majority (about 70% of the years) of the years are near normal in the precipitation rate. The Standardized Precipitation Index (SPI) demonstrated a normal distribution of years. Dry and wet years constitute about 15% of the total 146 years (1876-2021). Extremely dry years might appear in two consecutive years between 50 to 60 years count. After 1991, there were no wet years it was only near normal and few dry years. The last 30 years showed a trend of increasing drought years without any occurrence of wet years. This study demonstrated the importance of keeping records of at least rainfall data and it must be recorded on a daily basis or intensity on time. It is highly important on a managerial basis and for water security reasons to understand the drought event occurrence and investigate the changes in rainfall rates. Climate change scenarios always forecast a decrease in rainfall rates which will not appear without such studies. 展开更多
关键词 Climate Change standardized precipitation index (SPI) Beirut Rainfall Gag-es
下载PDF
Using leaf area index(LAI) to assess vegetation response to drought in Yunnan province of China 被引量:4
14
作者 Kwangchol KIM WANG Ming-cheng +3 位作者 Sailesh RANJITKAR LIU Su-hong XU Jian-chu Robert J.ZOMER 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1863-1872,共10页
Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to... Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness. 展开更多
关键词 MODIS Leaf area index distribution standardized precipitation index(SPI) Drought Yunnan
下载PDF
Response of drought to climate extremes in a semi-arid inland river basin in China
15
作者 QU Zhicheng YAO Shunyu LIU Dongwei 《Journal of Arid Land》 SCIE CSCD 2024年第11期1505-1521,共17页
Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin Rive... Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin River Basin(a semi-arid inland river basin)of China for the period of 2021–2100 by employing a multi-model ensemble approach based on three climate Shared Socioeconomic Pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)from the latest Coupled Model Intercomparison Project Phase 6(CMIP6).Furthermore,a linear regression,a wavelet analysis,and the correlation analysis were conducted to explore the response of climate extremes to the Standardized Precipitation Evapotranspiration Index(SPEI)and Streamflow Drought Index(SDI),as well as their respective trends during the historical period from 1970 to 2020 and during the future period from 2021 to 2070.The results indicated that extreme high temperatures and extreme precipitation will further intensify under the higher forcing scenarios(SSP5-8.5>SSP2-4.5>SSP1-2.6)in the future.The SPEI trends under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios were estimated as–0.003/a,–0.004/a,and–0.008/a,respectively,indicating a drier future climate.During the historical period(1970–2020),the SPEI and SDI trends were–0.003/a and–0.016/a,respectively,with significant cycles of 15 and 22 a,and abrupt changes occurring in 1995 and 1996,respectively.The next abrupt change in the SPEI was projected to occur in the 2040s.The SPEI had a significant positive correlation with both summer days(SU)and heavy precipitation days(R10mm),while the SDI was only significantly positively correlated with R10mm.Additionally,the SPEI and SDI exhibited a strong and consistent positive correlation at a cycle of 4–6 a,indicating a robust interdependence between the two indices.These findings have important implications for policy makers,enabling them to improve water resource management of inland river basins in arid and semi-arid areas under future climate uncertainty. 展开更多
关键词 climate extremes climate change standardized precipitation Evapotranspiration index(SPEI) Streamflow Drought index(SDI) wavelet analysis multi-model ensemble Xilin River Basin
下载PDF
Assessment of Climate Variability and Agricultural Activities in the Area of Tadla Plain
16
作者 Yousra El Baki Khalid Boutoial Abdelouahid Medaghri-Alaoui 《Journal of Geoscience and Environment Protection》 2023年第11期1-26,共26页
The variations in both precipitation and temperature have far-reaching effects on agricultural activities and the accessibility of water resources. These climatic parameters are pivotal in determining the availability... The variations in both precipitation and temperature have far-reaching effects on agricultural activities and the accessibility of water resources. These climatic parameters are pivotal in determining the availability of both groundwater and surface water for agricultural use. The aim of this study was to evaluate the variations in climate parameters, focusing on precipitation and temperature, alongside changes in cultivated land area and crop yields in the Tadla area (Béni Mellal Khénifra region, Morocco);additionally, our research looks at the changes in water inflow into two dams and four aquifers. Trends were assessed over the period of 2010-2020 using the standardized precipitation index (SPI) method, as well as the parametric regression method and nonparametric Mann-Kendall and Sen’s slope test. This analysis can be a preliminary step in demonstrating the effects of climate variability on water resource availability and its adverse impacts on agriculture in the region. The results showed a decreasing trend for some yield crops despite the increase in the cultivated area. The results of the groundwater levels and inflow dams showed a significant upward evolution. The analysis of the obtained SPI values and temperatures has revealed a notable and consistent upward trendencies. This upward trajectory indicates that both the SPI values, which reflect precipitation patterns and the temperatures, have been on the rise over the examined period. These results prompt reflection on the effects of climate variability on water resources in the region and economic activities, particularly agriculture. 展开更多
关键词 Béni Mellal Khénifra Region GROUNDWATER Mann Kendal Method Regression Groundwater Levels standardized precipitation index
下载PDF
Spatiotemporal Characteristics of Droughts and Floods in Shandong Province,China and Their Relationship with Food Loss 被引量:1
17
作者 YANG Wentong ZHANG Liyuan YANG Ziyu 《Chinese Geographical Science》 SCIE CSCD 2023年第2期304-319,共16页
Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardiz... Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardized Precipitation Evapotranspiration Index is calculated using monthly meteorological data from 1984 to 2020 in Shandong Province of China and is used to identify the province’s drought and flood characteristics.Then,food losses due to droughts and floods are estimated separately from disaster loss data.Finally,the relationship between drought/flood-related factors and food losses is quantified using methods such as the Pearson correlation coefficient and linear regression.The results show that:1)there is a trend of aridity in Shandong Province,and the drought characteristic variables are increasing yearly while flood duration and severity are decreasing.2)The food losses caused by droughts in Shandong Province are more than those caused by floods,and the area where droughts and floods occur frequently is located in Linyi City.3)The impact of precipitation on food loss due to drought/flood is significant,followed by potential evapotranspiration and temperature.4)The relationship between drought and flood conditions and food losses can be precisely quantified.The accumulated drought duration of one month led to 1.939×10^(4)t of grain loss,and an increase in cumulative flood duration of one month resulted in1.134×10^(4)t of grain loss.If the cumulative drought severity and average drought peak increased by one unit,food loss due to drought will increase by 1.562×10^(4)t and 1.511×10^(6)t,respectively.If the cumulative flood severity and average flood peak increase by one unit,food loss will increase by 8.470×103t and 1.034×10^(6)t,respectively. 展开更多
关键词 drought disaster flood disaster food loss Pearson correlation standardized precipitation Evapotranspiration index SHANDONG China
下载PDF
Drought characteristics of Henan province in 1961-2013 based on Standardized Precipitation Evapotranspiration Index 被引量:18
18
作者 SHI Benlin ZHU Xinyu +1 位作者 HU Yunchuan YANG Yanyan 《Journal of Geographical Sciences》 SCIE CSCD 2017年第3期311-325,共15页
Drought is one of the most complex natural hazards affecting agriculture, water resources, natural ecosystems, and society. The negative societal consequences of drought include severe economic losses, famine, epidemi... Drought is one of the most complex natural hazards affecting agriculture, water resources, natural ecosystems, and society. The negative societal consequences of drought include severe economic losses, famine, epidemics, and land degradation. However, few studies have analyzed the complexity of drought characteristics, both at multiple time scales and with variations in evapotranspiration. In this study, drought occurrences were quantified using a new drought index, the Standardized Precipitation Evapotranspiration Index (SPEI), based on observed data of monthly mean temperature and precipitation from 1961 to 2013 in Henan province, central China. Based on the SPEI values of each weather station in the study the frequency and severity of meteorological droughts were computed, and the monthly, seasonal, and annual drought frequency and intensity over a 53-year period were analyzed. The spatial and temporal evolution, intensity, and the primary causes of drought occurrence in Henan were revealed. The results showed that the SPEI values effectively reflected the spa- tial and temporal pattern of drought occurrence. As the time scale decreased, the amplitude of the SPEI increased and droughts became more frequent. Since 1961, drought has oc- curred at the annual, seasonal, and monthly scales, and the occurrence of drought has in- creased. However, regional distribution has been uneven. The highest drought frequency, 35%, was observed in the Zhoukou region, while the lowest value, -26%, was measured in central and western Henan. The most severe droughts occurred in the spring and summer, followed by autumn. Annually, wide-ranging droughts occurred in 1966-1968, 1998-2000, and 2011-2013. The drought intensity showed higher values in north and west Henan, and lower values in its east and south. The maximum drought intensity value was recorded in Anyang, and the minimum occurred in Zhumadian, at 22.18% and 16.60%, respectively. The factors with the greatest influence on drought occurrence are increasing temperatures, the Eurasian atmospheric circulation patterns, and the El Nino effect. 展开更多
关键词 Henan province standardized precipitation Evapotranspiration index drought intensity meteoro-logical drought climate change
原文传递
Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset
19
作者 Sakine KOOHI Hadi RAMEZANI ETEDALI 《Journal of Arid Land》 SCIE CSCD 2023年第4期377-392,共16页
Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at... Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at a local scale is vital.In this study,we assessed the efficiency of seven downscaled Global Climate Models(GCMs)provided by the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP),and investigated the impacts of climate change on future meteorological drought using Standard Precipitation Index(SPI)in the Karoun River Basin(KRB)of southwestern Iran under two Representative Concentration Pathway(RCP)emission scenarios,i.e.,RCP4.5 and RCP8.5.The results demonstrated that SPI estimated based on the Meteorological Research Institute Coupled Global Climate Model version 3(MRI-CGCM3)is consistent with the one estimated by synoptic stations during the historical period(1990-2005).The root mean square error(RMSE)value is less than 0.75 in 77%of the synoptic stations.GCMs have high uncertainty in most synoptic stations except those located in the plain.Using the average of a few GCMs to improve performance and reduce uncertainty is suggested by the results.The results revealed that with the areas affected by wetness decreasing in the KRB,drought frequency in the North KRB is likely to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios.At the seasonal scale,the decreasing trend for SPI in spring,summer,and winter shows a drought tendency in this region.The climate-induced drought hazard can have vast consequences,especially in agriculture and rural livelihoods.Accordingly,an increasing trend in drought during the growing seasons under RCP scenarios is vital for water managers and farmers to adopt strategies to reduce the damages.The results of this study are of great value for formulating sustainable water resources management plans affected by climate change. 展开更多
关键词 climate change meteorological drought Global Climate Models(GCMs) Standard precipitation index(SPI) Representative Concentration Pathway(RCP) NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP) southwestern Iran
下载PDF
Assessing Vulnerability to Drought Based on Exposure,Sensitivity and Adaptive Capacity:A Case Study in Middle Inner Mongolia of China 被引量:20
20
作者 LIU Xiaoqian WANG Yanglin +2 位作者 PENG Jian Ademola K BRAIMOH YIN He 《Chinese Geographical Science》 SCIE CSCD 2013年第1期13-25,共13页
In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the pos... In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the positive effects of human activities in the coupled human and natural system(CHANS) by introducing adaptive capacity as an evaluation criterion.A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability:exposure,sensitivity and adaptive capacity.We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China,where drought hazard is the key threat to the CHANS.Specific indices were produced to translate such climate variance and social-economic differences into specific indicators.The results showed that the most exposed regions are the inner land areas,while counties located in the eastern part are potentially the most adaptive ones.Ordos City and Bayannur City are most frequently influenced by multiple climate variances,showing highest sensitivity.Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences.After depiction of the spatial differentiations and analysis of the reasons,climate zones were divided to depict the differences in facing to the drought threats.The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map.Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope.This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management. 展开更多
关键词 vulnerability assessment standardized precipitation index (SPI) EXPOSURE sensitivity adaptive capacity
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部