The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ...The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.展开更多
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ...Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.展开更多
State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging pro...State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging profiles,which overlooked the fact that the charging and discharging profiles are random and not complete in real application.This work investigates the influence of feature engineering on the accuracy of different machine learning(ML)-based SOH estimations acting on different recharging sub-profiles where a realistic battery mission profile is considered.Fifteen features were extracted from the battery partial recharging profiles,considering different factors such as starting voltage values,charge amount,and charging sliding windows.Then,features were selected based on a feature selection pipeline consisting of filtering and supervised ML-based subset selection.Multiple linear regression(MLR),Gaussian process regression(GPR),and support vector regression(SVR)were applied to estimate SOH,and root mean square error(RMSE)was used to evaluate and compare the estimation performance.The results showed that the feature selection pipeline can improve SOH estimation accuracy by 55.05%,2.57%,and 2.82%for MLR,GPR and SVR respectively.It was demonstrated that the estimation based on partial charging profiles with lower starting voltage,large charge,and large sliding window size is more likely to achieve higher accuracy.This work hopes to give some insights into the supervised ML-based feature engineering acting on random partial recharges on SOH estimation performance and tries to fill the gap of effective SOH estimation between theoretical study and real dynamic application.展开更多
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
Introduction: COVID-19 was an emerging disease putting all public health systems in countries around the world in a state of emergency. To be able to prevent its spread and morbidity and mortality, several appropriate...Introduction: COVID-19 was an emerging disease putting all public health systems in countries around the world in a state of emergency. To be able to prevent its spread and morbidity and mortality, several appropriate strategies were necessary, such as vaccination. The latter has been the subject of controversy. The objective of the present study is therefore to evaluate the factors associated with the acceptance of this vaccine within the population of the Kasenga State Health Area. A result which will shed light on future strategies to be put in place for possible new vaccines. Methodology: Is a prospective and analytical cross-sectional study conducted over a period of approximately 1 month from January 5 to February 5, 2024. A survey questionnaire in Kobotoolbox was useful for collecting data. STATA software was very important for us in analyzing the data collected. Results: Prevalence of vaccination against COVID-19 among the population of the Kasenga State Health Area is 37.5% (28.4 - 45.6). The study revealed that reluctance is observed among most of the population for different reasons, including, first and foremost, the deliberate aspect of not wanting to take the vaccine (46.6%) and rumors that this antigen is dangerous and harmful (32.9%). 72.5% of respondents believe that the COVID-19 vaccine is a fabrication, unhealthy and that the disease itself never existed. The study proved that there was a statistical relationship between age (p = 0.001) and adherence to vaccination. And the refusal of respondents to recommend the vaccine to loved ones was a factor associated with non-adherence to vaccination (OR = 7.901, 95% IC [3.028 - 20.615], p = 0.000). Conclusion: Vaccination against COVID-19 was not well accepted by the population of the study site. Raising public awareness and involving community leaders and political-administrative authorities, which has not been done well, would play an important role in the good perception of the disease, of the vaccine and therefore in its adherence.展开更多
Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is i...Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is important to monitor the available energy that can be stored in the batteries,and classification societies typically require the state of health(SOH)to be verified by independent tests.This paper addresses statistical modeling of SOH for maritime lithium-ion batteries based on operational sensor data.Various methods for sensor-based,data-driven degradation monitoring will be presented,and advantages and challenges with the different approaches will be discussed.The different approaches include cumulative degradation models and snapshot models,models that need to be trained and models that need no prior training,and pure data-driven models and physics-informed models.Some of the methods only rely on measured data,such as current,voltage,and temperature,whereas others rely on derived quantities such as state of charge.Models include simple statistical models and more complicated machine learning techniques.Insight from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies.展开更多
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t...The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.展开更多
To improve the estimation accuracy of state of charge(SOC)and state of health(SOH)for lithium-ion batteries,in this paper,a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm...To improve the estimation accuracy of state of charge(SOC)and state of health(SOH)for lithium-ion batteries,in this paper,a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm(GA)combined with back propagation(BP)neural network is proposed,the research addresses the issue of data manipulation resulting fromcyber-attacks.Firstly,anomalous data stemming fromcyber-attacks are identified and eliminated using the isolated forest algorithm,followed by data restoration.Secondly,the incremental capacity(IC)curve is derived fromthe restored data using theKalman filtering algorithm,with the peak of the ICcurve(ICP)and its corresponding voltage serving as the health factor(HF).Thirdly,the GA-BP neural network is applied to map the relationship between HF,constant current charging time,and SOH,facilitating the estimation of SOH based on HF.Finally,SOC estimation at the charging cut-off voltage is calculated by inputting the SOH estimation value into the trained model to determine the constant current charging time,and by updating the maximum available capacity.Experiments show that the root mean squared error of the joint estimation results does not exceed 1%,which proves that the proposed method can estimate the SOC and SOH accurately and stably even in the presence of false data injection attacks.展开更多
Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accur...Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accurate estimation and prediction of battery health conditions are crucial for battery safety management.In this paper,an end-cloud collaboration method is proposed to approach the track of battery degradation process,integrating end-side empirical model with cloud-side data-driven model.Based on ensemble learning methods,the data-driven model is constructed by three base models to obtain cloud-side highly accurate results.The double exponential decay model is utilized as an empirical model to output highly real-time prediction results.With Kalman filter,the prediction results of end-side empirical model can be periodically updated by highly accurate results of cloud-side data-driven model to obtain highly accurate and real-time results.Subsequently,the whole framework can give an accurate prediction and tracking of battery degradation,with the mean absolute error maintained below 2%.And the execution time on the end side can reach 261μs.The proposed end-cloud collaboration method has the potential to approach highly accurate and highly real-time estimation for battery health conditions during battery full life cycle in architecture of cyber hierarchy and interactional network.展开更多
State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to ac...State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios.展开更多
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import...With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%.展开更多
In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling struct...In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.展开更多
Background: Behind every great system is an organized team;this is especially true in the healthcare industry, where a dedicated human resources team can effectively recruit employees, train staff, and implement safet...Background: Behind every great system is an organized team;this is especially true in the healthcare industry, where a dedicated human resources team can effectively recruit employees, train staff, and implement safety measures in the workplace. The importance of human resources in the healthcare industry cannot be overstated, with benefits ranging from providing an orderly and effectively run facility to equipping staff with the most accurate and up-to-date training. Proper human resources management is critical in providing high-quality health care. A refocus on human resources management in healthcare requires more research to develop new policies. Effective human resources management strategies are greatly needed to achieve better outcomes and access to health care worldwide. Methods: This study leveraged NOI Polls census data on Health Facility Assessment for Lagos State. One thousand two hundred fifty-six health care facilities were assessed in Lagos State;numbers of Health workers were documented alongside their area of specialization. Also, demographic characterizations of the facilities, such as LGA, Ownership type, Facility Level Care, and Category of the facility, were also documented. Descriptive statistics alongside cross tabulation was done to present the various area of specialization of the health workers. Multiple response analysis was done to understand the distribution of human resources across the health facilities. At the same time, Chi-square and correlation tests were conducted to test the independence of various categories recorded while understanding the relationships among selected specialties. Results: The study revealed that Nurses were the most common health specialist in the Lagos State health facilities. At the same time, Gynecologists and General surgeons are the two medical specialists mostly common in health facilities. Midwives are the second most common health specialist working full time, while Generalist medical doctors make up the top three health specialists working full time. Nurses and Midwives had the highest number in Lagos State, while Pulmonologists were currently the lowest human resource available in Lagos State health care system. It was also noted that health facility distribution across Lagos’s urban and rural areas was even. In contrast, distribution based on other factors such as ownership type, Facility level of care, and facility category was slightly skewed. Conclusion: The distribution of health workers in health facility across LGA in Lagos State depend on Ownership type, Facility level of care, and category of the facility.展开更多
针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term m...针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的锂电池SOH估计方法。首先,从电池充电阶段数据中提取五类HFs。接着,利用核主成分分析法(kernel principal component analysis,KPCA)获取HFs的关键健康因子。最后,应用GWO-BiLSTM模型对关键健康因子和SOH之间的映射关系进行动态建模,实现锂电池SOH的估计。利用NASA电池老化数据集进行验证,结果表明,所提出方法能够准确估计锂电池的SOH,均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。展开更多
Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,...Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,notably lithium-ion batteries.Over time,these batteries degrade,affecting their efficiency and posing safety risks.Monitoring and predicting battery aging is essential,especially estimating its state of health(SOH).Various SOH estimation methods exist,from traditional model-based approaches to machine learning approaches.展开更多
基金supported by Fundamental Research Program of Shanxi Province(No.202203021211088)Shanxi Provincial Natural Science Foundation(No.202204021301049).
文摘The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.
基金supported by the National Natural Science Foundation of China (No.62173281,52377217,U23A20651)Sichuan Science and Technology Program (No.24NSFSC0024,23ZDYF0734,23NSFSC1436)+2 种基金Dazhou City School Cooperation Project (No.DZXQHZ006)Technopole Talent Summit Project (No.KJCRCFH08)Robert Gordon University。
文摘Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.
基金funded by China Scholarship Council.The fund number is 202108320111 and 202208320055。
文摘State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging profiles,which overlooked the fact that the charging and discharging profiles are random and not complete in real application.This work investigates the influence of feature engineering on the accuracy of different machine learning(ML)-based SOH estimations acting on different recharging sub-profiles where a realistic battery mission profile is considered.Fifteen features were extracted from the battery partial recharging profiles,considering different factors such as starting voltage values,charge amount,and charging sliding windows.Then,features were selected based on a feature selection pipeline consisting of filtering and supervised ML-based subset selection.Multiple linear regression(MLR),Gaussian process regression(GPR),and support vector regression(SVR)were applied to estimate SOH,and root mean square error(RMSE)was used to evaluate and compare the estimation performance.The results showed that the feature selection pipeline can improve SOH estimation accuracy by 55.05%,2.57%,and 2.82%for MLR,GPR and SVR respectively.It was demonstrated that the estimation based on partial charging profiles with lower starting voltage,large charge,and large sliding window size is more likely to achieve higher accuracy.This work hopes to give some insights into the supervised ML-based feature engineering acting on random partial recharges on SOH estimation performance and tries to fill the gap of effective SOH estimation between theoretical study and real dynamic application.
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.
文摘Introduction: COVID-19 was an emerging disease putting all public health systems in countries around the world in a state of emergency. To be able to prevent its spread and morbidity and mortality, several appropriate strategies were necessary, such as vaccination. The latter has been the subject of controversy. The objective of the present study is therefore to evaluate the factors associated with the acceptance of this vaccine within the population of the Kasenga State Health Area. A result which will shed light on future strategies to be put in place for possible new vaccines. Methodology: Is a prospective and analytical cross-sectional study conducted over a period of approximately 1 month from January 5 to February 5, 2024. A survey questionnaire in Kobotoolbox was useful for collecting data. STATA software was very important for us in analyzing the data collected. Results: Prevalence of vaccination against COVID-19 among the population of the Kasenga State Health Area is 37.5% (28.4 - 45.6). The study revealed that reluctance is observed among most of the population for different reasons, including, first and foremost, the deliberate aspect of not wanting to take the vaccine (46.6%) and rumors that this antigen is dangerous and harmful (32.9%). 72.5% of respondents believe that the COVID-19 vaccine is a fabrication, unhealthy and that the disease itself never existed. The study proved that there was a statistical relationship between age (p = 0.001) and adherence to vaccination. And the refusal of respondents to recommend the vaccine to loved ones was a factor associated with non-adherence to vaccination (OR = 7.901, 95% IC [3.028 - 20.615], p = 0.000). Conclusion: Vaccination against COVID-19 was not well accepted by the population of the study site. Raising public awareness and involving community leaders and political-administrative authorities, which has not been done well, would play an important role in the good perception of the disease, of the vaccine and therefore in its adherence.
基金This work has been carried out with in the DDD BATMAN project,supported by MarTERA and the Research Council of Norway(project no 311445).
文摘Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is important to monitor the available energy that can be stored in the batteries,and classification societies typically require the state of health(SOH)to be verified by independent tests.This paper addresses statistical modeling of SOH for maritime lithium-ion batteries based on operational sensor data.Various methods for sensor-based,data-driven degradation monitoring will be presented,and advantages and challenges with the different approaches will be discussed.The different approaches include cumulative degradation models and snapshot models,models that need to be trained and models that need no prior training,and pure data-driven models and physics-informed models.Some of the methods only rely on measured data,such as current,voltage,and temperature,whereas others rely on derived quantities such as state of charge.Models include simple statistical models and more complicated machine learning techniques.Insight from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies.
基金supported in part by the National Natural Science Foundation of China(92167201,62273264,61933007)。
文摘The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.
基金funded by the Scientific Research Project of the Education Department of Jilin Province(No.JJKH20230121KJ).
文摘To improve the estimation accuracy of state of charge(SOC)and state of health(SOH)for lithium-ion batteries,in this paper,a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm(GA)combined with back propagation(BP)neural network is proposed,the research addresses the issue of data manipulation resulting fromcyber-attacks.Firstly,anomalous data stemming fromcyber-attacks are identified and eliminated using the isolated forest algorithm,followed by data restoration.Secondly,the incremental capacity(IC)curve is derived fromthe restored data using theKalman filtering algorithm,with the peak of the ICcurve(ICP)and its corresponding voltage serving as the health factor(HF).Thirdly,the GA-BP neural network is applied to map the relationship between HF,constant current charging time,and SOH,facilitating the estimation of SOH based on HF.Finally,SOC estimation at the charging cut-off voltage is calculated by inputting the SOH estimation value into the trained model to determine the constant current charging time,and by updating the maximum available capacity.Experiments show that the root mean squared error of the joint estimation results does not exceed 1%,which proves that the proposed method can estimate the SOC and SOH accurately and stably even in the presence of false data injection attacks.
基金financially supported by the National Natural Science Foundation of China(No.52102470)。
文摘Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accurate estimation and prediction of battery health conditions are crucial for battery safety management.In this paper,an end-cloud collaboration method is proposed to approach the track of battery degradation process,integrating end-side empirical model with cloud-side data-driven model.Based on ensemble learning methods,the data-driven model is constructed by three base models to obtain cloud-side highly accurate results.The double exponential decay model is utilized as an empirical model to output highly real-time prediction results.With Kalman filter,the prediction results of end-side empirical model can be periodically updated by highly accurate results of cloud-side data-driven model to obtain highly accurate and real-time results.Subsequently,the whole framework can give an accurate prediction and tracking of battery degradation,with the mean absolute error maintained below 2%.And the execution time on the end side can reach 261μs.The proposed end-cloud collaboration method has the potential to approach highly accurate and highly real-time estimation for battery health conditions during battery full life cycle in architecture of cyber hierarchy and interactional network.
基金funded by the “SMART BATTERY” project, granted by Villum Foundation in 2021 (project number 222860)。
文摘State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios.
基金supported by National Natural Science Foundation of China (Grant No. 51677058)。
文摘With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%.
基金supported by the Natural Science Foundation of China underGrant 61833016 and 61873293the Shaanxi OutstandingYouth Science Foundation underGrant 2020JC-34the Shaanxi Science and Technology Innovation Team under Grant 2022TD-24.
文摘In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.
文摘Background: Behind every great system is an organized team;this is especially true in the healthcare industry, where a dedicated human resources team can effectively recruit employees, train staff, and implement safety measures in the workplace. The importance of human resources in the healthcare industry cannot be overstated, with benefits ranging from providing an orderly and effectively run facility to equipping staff with the most accurate and up-to-date training. Proper human resources management is critical in providing high-quality health care. A refocus on human resources management in healthcare requires more research to develop new policies. Effective human resources management strategies are greatly needed to achieve better outcomes and access to health care worldwide. Methods: This study leveraged NOI Polls census data on Health Facility Assessment for Lagos State. One thousand two hundred fifty-six health care facilities were assessed in Lagos State;numbers of Health workers were documented alongside their area of specialization. Also, demographic characterizations of the facilities, such as LGA, Ownership type, Facility Level Care, and Category of the facility, were also documented. Descriptive statistics alongside cross tabulation was done to present the various area of specialization of the health workers. Multiple response analysis was done to understand the distribution of human resources across the health facilities. At the same time, Chi-square and correlation tests were conducted to test the independence of various categories recorded while understanding the relationships among selected specialties. Results: The study revealed that Nurses were the most common health specialist in the Lagos State health facilities. At the same time, Gynecologists and General surgeons are the two medical specialists mostly common in health facilities. Midwives are the second most common health specialist working full time, while Generalist medical doctors make up the top three health specialists working full time. Nurses and Midwives had the highest number in Lagos State, while Pulmonologists were currently the lowest human resource available in Lagos State health care system. It was also noted that health facility distribution across Lagos’s urban and rural areas was even. In contrast, distribution based on other factors such as ownership type, Facility level of care, and facility category was slightly skewed. Conclusion: The distribution of health workers in health facility across LGA in Lagos State depend on Ownership type, Facility level of care, and category of the facility.
文摘针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的锂电池SOH估计方法。首先,从电池充电阶段数据中提取五类HFs。接着,利用核主成分分析法(kernel principal component analysis,KPCA)获取HFs的关键健康因子。最后,应用GWO-BiLSTM模型对关键健康因子和SOH之间的映射关系进行动态建模,实现锂电池SOH的估计。利用NASA电池老化数据集进行验证,结果表明,所提出方法能够准确估计锂电池的SOH,均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。
基金supported by the National Natural Science Foundation of China(72201152 and 52207229)。
文摘Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,notably lithium-ion batteries.Over time,these batteries degrade,affecting their efficiency and posing safety risks.Monitoring and predicting battery aging is essential,especially estimating its state of health(SOH).Various SOH estimation methods exist,from traditional model-based approaches to machine learning approaches.