Green shipping and electrification have been the main topics in the shipping industry.In this process,the pure battery-powered ship is developed,which is zero-emission and well-suited for inland shipping.Currently,bat...Green shipping and electrification have been the main topics in the shipping industry.In this process,the pure battery-powered ship is developed,which is zero-emission and well-suited for inland shipping.Currently,battery swapping stations and ships are being explored since battery charging ships may not be feasible for inland long-distance trips.However,improper infrastructure planning for battery swapping stations and ships will increase costs and decrease operation efficiency.Therefore,a bilevel optimal infrastructure planning method is proposed in this paper for battery swapping stations and ships.First,the energy consumption model for the battery swapping ship is established considering the influence of the sailing environment.Second,a bilevel optimization model is proposed to minimize the total cost.Specifically,the battery swapping station(BSS)location problem is investigated at the upper level.The optimization of battery size in each battery swapping station and ship and battery swapping scheme are studied at the lower level based on speed and energy optimization.Finally,the bilevel self-adaptive differential evolution algorithm(BlSaDE)is proposed to solve this problem.The simulation results show that total cost could be reduced by 5.9%compared to the original results,and the effectiveness of the proposed method is confirmed.展开更多
California mandated that 100% of vehicles sold must be electric by 2035. As electric vehicles (EVs) reach a higher penetration of the car sector, cities will need to provide publicly accessible charging stations to me...California mandated that 100% of vehicles sold must be electric by 2035. As electric vehicles (EVs) reach a higher penetration of the car sector, cities will need to provide publicly accessible charging stations to meet the charging demand of people who do not have access to a private charging spot like a personal garage. We have chosen to limit our scope to San Diego County due to its non-trivial size, well-defined shape, and dependence on personal vehicles;this project models 100% of current vehicles as electric, roughly 2.5 million. By planning for the future, our model becomes more useful as well as more equitable. We anticipate that our model will find locations that can service multiple population centers, while also maximizing distance to other stations. Sensitivity analysis and testing of our algorithms are conducted for Coronado Island, an island with 24,697 residents. Our formulation is then scaled to set the parameters for the whole county.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
The power supply and distribution systems for Antarctic research stations have special characteristics.In light of a worldwide trend toward a gradual increase in the application of renewable energy,an analysis was per...The power supply and distribution systems for Antarctic research stations have special characteristics.In light of a worldwide trend toward a gradual increase in the application of renewable energy,an analysis was performed to assess the feasibility of achieving a direct current power supply and distribution at Antarctic research stations by comparing the characteristics of direct current and alternating current electricity.Research was also performed on the status quo and future trends in direct current power supply and distribution systems in Antarctica research stations in combination with case studies.展开更多
Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recu...Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations.展开更多
In this paper,we consider a multi-crane scheduling problem in rail stations because their operations directly influence the throughput of the rail stations.In particular,the job is not only assigned to cranes but also...In this paper,we consider a multi-crane scheduling problem in rail stations because their operations directly influence the throughput of the rail stations.In particular,the job is not only assigned to cranes but also the job sequencing is implemented for each crane to minimize the makespan of cranes.A dual cycle of cranes is used to minimize the number of working cycles of cranes.The rail crane scheduling problems in this study are based on the movement of containers.We consider not only the gantry moves,but also the trolley moves as well as the rehandle cases are also included.A mathematical model of multi-crane scheduling is developed.The traditional and parallel simulated annealing(SA)are adapted to determine the optimal scheduling solutions.Numerical examples are conducted to evaluate the applicability of the proposed algorithms.Verification of the proposed parallel SA is done by comparing it to existing previous works.Results of numerical computation highlighted that the parallel SA algorithm outperformed the SA and gave better solutions than other considered algorithms.展开更多
4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfac...4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.展开更多
Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations inc...Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations include the Ångström-Prescott linear model and four amongst its derivatives, i.e. logarithmic, exponential, power and quadratic functions. Monthly mean values of daily global solar radiation and sunshine duration data for a period of 20 to 23 years, from the Geographical Institute of Burundi (IGEBU), have been used. For any of the six stations, ten single or double linear regressions have been developed from the above-said five functions, to relate in terms of monthly mean values, the daily clearness index () to each of the next two kinds of relative sunshine duration (RSD): and . In those ratios, G<sub>0</sub>, S<sub>0 </sub>and stand for the extraterrestrial daily solar radiation on a horizontal surface, the day length and the modified day length taking into account the natural site’s horizon, respectively. According to the calculated mean values of the clearness index and the RSD, each station experiences a high number of fairly clear (or partially cloudy) days. Estimated values of the dependent variable (y) in each developed linear regression, have been compared to measured values in terms of the coefficients of correlation (R) and of determination (R<sub>2</sub>), the mean bias error (MBE), the root mean square error (RMSE) and the t-statistics. Mean values of these statistical indicators have been used to rank, according to decreasing performance level, firstly the ten developed equations per station on account of the overall six stations, secondly the six stations on account of the overall ten equations. Nevertheless, the obtained values of those indicators lay in the next ranges for all the developed sixty equations:;;;, with . These results lead to assert that any of the sixty developed linear regressions (and thus equations in terms of and ), fits very adequately measured data, and should be used to estimate monthly average daily global solar radiation with sunshine duration for the relevant station. It is also found that using as RSD, is slightly more advantageous than using for estimating the monthly average daily clearness index, . Moreover, values of statistical indicators of this study match adequately data from other works on the same kinds of empirical equations.展开更多
This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port H...This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.展开更多
As intelligent networked cars become increasingly integrated into people’s lives,the charging infrastructure of new energy vehicles is becoming a significant factor in the development of the new energy vehicle market...As intelligent networked cars become increasingly integrated into people’s lives,the charging infrastructure of new energy vehicles is becoming a significant factor in the development of the new energy vehicle market.In light of the rapid growth of this market,the problem of charging stations is gradually becoming apparent.This paper puts forward a charging station planning idea.Firstly,a forecast of the charging demand must be made.Subsequently,the economic viability,safety,ease of use for faculty and staff,and the rapid development of new automotive technology must be taken into account.Finally,research and analysis of the actual data must be carried out following the requirements of the different college campuses.展开更多
Urban subway station is a key node related to urban social,political,economic and cultural activities.There are some differences in the location,function orientation,land use and flow characteristics of different type...Urban subway station is a key node related to urban social,political,economic and cultural activities.There are some differences in the location,function orientation,land use and flow characteristics of different types of stations in the city.This paper mainly used Tyson’s edge,kernel density analysis,chart analysis and other methods to classify the functional types of 412,393 POI data of 26 stations along Metro he results showed that the spatial distribution of Beijing Metro Line 6 was mainly divided into 3 categories,subway stations were divided into 4 categories.Among them,type A sites were divided into composite and single types,and the distribution characteristics of the 6 types of sites were quite different.Based on the qualitative and quantitative analysis of POI point data,this method can quickly classify and analyze the characteristics of stations along Line 6 in Beijing,which also has theoretical and practical value for the planning of urban subway lines.展开更多
Space weather has a remarkable effect on modern human activities,e.g.,communication,navigation,space exploration etc.Space physics study from polar stations is as an important part of the entire solar-terrestrial spac...Space weather has a remarkable effect on modern human activities,e.g.,communication,navigation,space exploration etc.Space physics study from polar stations is as an important part of the entire solar-terrestrial space,and conducts quantitative research from the perspective of overall space plasma behavior.One of the most important issues is to identify the dominant processes that transfer plasma and momentum from the solar wind to Earth’s magnetosphere.Thus,it is necessary to carry out research for combination the observations from polar ground stations and spacecraft observations in the space.Observations at polar regions can be as a window to the space for satellite traffic controls.The operation of the observation chain―Zhongshan-Taishan-Kunlun Station could monitor polar space debris in a large area with high temporal and spatial resolution.Also,night-time measurements of astronomical seeing at Dome A in Antarctica make it less challenging to locate a telescope above it,thereby giving greater access to the free atmosphere because of a thinner boundary layer.展开更多
It is necessary to pay particular attention to the uncertainties that exist in an engineering problem to reduce the risk of seismic damage of infrastructures against natural hazards.Moreover,certain structural perform...It is necessary to pay particular attention to the uncertainties that exist in an engineering problem to reduce the risk of seismic damage of infrastructures against natural hazards.Moreover,certain structural performance levels should be satisfied during strong earthquakes.However,these performance levels have been only well described for aboveground structures.This study investigates the main uncertainties involved in the performance-based seismic analysis of a multi-story subway station.More than 100 pulse-like and no pulse-like ground motions have been selected.In this regard,an effective framework is presented,based on a set of nonlinear static and dynamic analyses performed by OpenSees code.The probabilistic seismic demand models for computing the free-field shear strain of soil and racking ratio of structure are proposed.These models result in less variability compared with existing relations,and make it possible to evaluate a wider range of uncertainties through reliability analysis in Rtx software using the Monte Carlo sampling method.This work is performed for three different structural performance levels(denoted as PL1ePL3).It is demonstrated that the error terms related to the magnitude and location of earthquake excitations and also the corresponding attenuation relationships have been the most important parameters.Therefore,using a faultestructure model would be inevitable for the reliability analysis of subway stations.It is found that the higher performance level(i.e.PL3)has more sensitivity to random variables than the others.In this condition,the pulse-like ground motions have a major contribution to the vulnerability of subway stations.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were...Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were analyzed,and treatment methods were discussed. Daily maintenance and management measures were put forward to ensure the normal operation of rain sensors and improve the quality of surface meteorological observation business.展开更多
Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable...Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.展开更多
Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p...Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.展开更多
The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manag...The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).展开更多
During both daily operation and emergency evacuation,the corners of walking facilities in subway stations play an important role in efficient circulation.However,the effectiveness of the corner is difficult to assess....During both daily operation and emergency evacuation,the corners of walking facilities in subway stations play an important role in efficient circulation.However,the effectiveness of the corner is difficult to assess.In this paper,a method of passenger gathering and scattering analysis based on queueing models was proposed to investigate the corner performance in subway stations.Firstly,we constructed a set of state spaces of passenger flow according to passenger density and proposed the state transition model of passenger flow.Moreover,the model of passenger flow blocking and unblocking probability were also presented.Then,to illustrate the validity of the method and model,several passenger gathering-scattering scenarios and were simulated to verify the influence of passenger distribution and facility width on passenger walking,and the blocking probability,throughput,and expected time were also analyzed under various widths of the target corridor and arrival rates.Results showed that the proposed model can reproduce the trend of walking parameters changing and the self-organizing phenomenon of'faster is lower'.With the increase of arrival rates of passengers,walking speeds of passengers decrease and the expected walking time is prolonged,and the blocking probability sharply increased when the arrival rate exceeded 7 peds/s.In addition,with change of width of the target facility,efficiency of capacity of walking circulation facility fluctuated.With the width of the target corridor enlarged by 10%,the steady state of passenger flow was less crowded.Therefore,corridor width is critical to the circulation efficiency of passengers in subway stations.The conclusions will help to develop reasonable passenger flow control plans to ease the jam and keep passengers walking safely.展开更多
基金supported by the Foundation of National Key Laboratory of Science and Technology(No.614221722040401)Green Intelligent Ship Standardization Leading Project(No.CBG4N21-4-2).
文摘Green shipping and electrification have been the main topics in the shipping industry.In this process,the pure battery-powered ship is developed,which is zero-emission and well-suited for inland shipping.Currently,battery swapping stations and ships are being explored since battery charging ships may not be feasible for inland long-distance trips.However,improper infrastructure planning for battery swapping stations and ships will increase costs and decrease operation efficiency.Therefore,a bilevel optimal infrastructure planning method is proposed in this paper for battery swapping stations and ships.First,the energy consumption model for the battery swapping ship is established considering the influence of the sailing environment.Second,a bilevel optimization model is proposed to minimize the total cost.Specifically,the battery swapping station(BSS)location problem is investigated at the upper level.The optimization of battery size in each battery swapping station and ship and battery swapping scheme are studied at the lower level based on speed and energy optimization.Finally,the bilevel self-adaptive differential evolution algorithm(BlSaDE)is proposed to solve this problem.The simulation results show that total cost could be reduced by 5.9%compared to the original results,and the effectiveness of the proposed method is confirmed.
文摘California mandated that 100% of vehicles sold must be electric by 2035. As electric vehicles (EVs) reach a higher penetration of the car sector, cities will need to provide publicly accessible charging stations to meet the charging demand of people who do not have access to a private charging spot like a personal garage. We have chosen to limit our scope to San Diego County due to its non-trivial size, well-defined shape, and dependence on personal vehicles;this project models 100% of current vehicles as electric, roughly 2.5 million. By planning for the future, our model becomes more useful as well as more equitable. We anticipate that our model will find locations that can service multiple population centers, while also maximizing distance to other stations. Sensitivity analysis and testing of our algorithms are conducted for Coronado Island, an island with 24,697 residents. Our formulation is then scaled to set the parameters for the whole county.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
文摘The power supply and distribution systems for Antarctic research stations have special characteristics.In light of a worldwide trend toward a gradual increase in the application of renewable energy,an analysis was performed to assess the feasibility of achieving a direct current power supply and distribution at Antarctic research stations by comparing the characteristics of direct current and alternating current electricity.Research was also performed on the status quo and future trends in direct current power supply and distribution systems in Antarctica research stations in combination with case studies.
文摘Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations.
文摘In this paper,we consider a multi-crane scheduling problem in rail stations because their operations directly influence the throughput of the rail stations.In particular,the job is not only assigned to cranes but also the job sequencing is implemented for each crane to minimize the makespan of cranes.A dual cycle of cranes is used to minimize the number of working cycles of cranes.The rail crane scheduling problems in this study are based on the movement of containers.We consider not only the gantry moves,but also the trolley moves as well as the rehandle cases are also included.A mathematical model of multi-crane scheduling is developed.The traditional and parallel simulated annealing(SA)are adapted to determine the optimal scheduling solutions.Numerical examples are conducted to evaluate the applicability of the proposed algorithms.Verification of the proposed parallel SA is done by comparing it to existing previous works.Results of numerical computation highlighted that the parallel SA algorithm outperformed the SA and gave better solutions than other considered algorithms.
基金Sponsored by the National Natural Science Foundation of China(51708004)Beijing Youth Teaching Master Team Construction Project(108051360023XN261)Yuyou Talent Training Program of North China University of Technology(215051360020XN160/009).
文摘4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.
文摘Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations include the Ångström-Prescott linear model and four amongst its derivatives, i.e. logarithmic, exponential, power and quadratic functions. Monthly mean values of daily global solar radiation and sunshine duration data for a period of 20 to 23 years, from the Geographical Institute of Burundi (IGEBU), have been used. For any of the six stations, ten single or double linear regressions have been developed from the above-said five functions, to relate in terms of monthly mean values, the daily clearness index () to each of the next two kinds of relative sunshine duration (RSD): and . In those ratios, G<sub>0</sub>, S<sub>0 </sub>and stand for the extraterrestrial daily solar radiation on a horizontal surface, the day length and the modified day length taking into account the natural site’s horizon, respectively. According to the calculated mean values of the clearness index and the RSD, each station experiences a high number of fairly clear (or partially cloudy) days. Estimated values of the dependent variable (y) in each developed linear regression, have been compared to measured values in terms of the coefficients of correlation (R) and of determination (R<sub>2</sub>), the mean bias error (MBE), the root mean square error (RMSE) and the t-statistics. Mean values of these statistical indicators have been used to rank, according to decreasing performance level, firstly the ten developed equations per station on account of the overall six stations, secondly the six stations on account of the overall ten equations. Nevertheless, the obtained values of those indicators lay in the next ranges for all the developed sixty equations:;;;, with . These results lead to assert that any of the sixty developed linear regressions (and thus equations in terms of and ), fits very adequately measured data, and should be used to estimate monthly average daily global solar radiation with sunshine duration for the relevant station. It is also found that using as RSD, is slightly more advantageous than using for estimating the monthly average daily clearness index, . Moreover, values of statistical indicators of this study match adequately data from other works on the same kinds of empirical equations.
文摘This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.
文摘As intelligent networked cars become increasingly integrated into people’s lives,the charging infrastructure of new energy vehicles is becoming a significant factor in the development of the new energy vehicle market.In light of the rapid growth of this market,the problem of charging stations is gradually becoming apparent.This paper puts forward a charging station planning idea.Firstly,a forecast of the charging demand must be made.Subsequently,the economic viability,safety,ease of use for faculty and staff,and the rapid development of new automotive technology must be taken into account.Finally,research and analysis of the actual data must be carried out following the requirements of the different college campuses.
基金Beijing Municipal Education Commission Social Science Project(KM202010009002)Beijing Municipal Social Science Foundation(22GLC062)“Young YuYou Talents Training Plan”of North China University of Technology.
文摘Urban subway station is a key node related to urban social,political,economic and cultural activities.There are some differences in the location,function orientation,land use and flow characteristics of different types of stations in the city.This paper mainly used Tyson’s edge,kernel density analysis,chart analysis and other methods to classify the functional types of 412,393 POI data of 26 stations along Metro he results showed that the spatial distribution of Beijing Metro Line 6 was mainly divided into 3 categories,subway stations were divided into 4 categories.Among them,type A sites were divided into composite and single types,and the distribution characteristics of the 6 types of sites were quite different.Based on the qualitative and quantitative analysis of POI point data,this method can quickly classify and analyze the characteristics of stations along Line 6 in Beijing,which also has theoretical and practical value for the planning of urban subway lines.
基金supported by the National Natural Science Foundation of China(Grant nos.42242406,42230202)Innovation Fund from Joint Innovation Center of Space Science(Aerospace Shanghai).
文摘Space weather has a remarkable effect on modern human activities,e.g.,communication,navigation,space exploration etc.Space physics study from polar stations is as an important part of the entire solar-terrestrial space,and conducts quantitative research from the perspective of overall space plasma behavior.One of the most important issues is to identify the dominant processes that transfer plasma and momentum from the solar wind to Earth’s magnetosphere.Thus,it is necessary to carry out research for combination the observations from polar ground stations and spacecraft observations in the space.Observations at polar regions can be as a window to the space for satellite traffic controls.The operation of the observation chain―Zhongshan-Taishan-Kunlun Station could monitor polar space debris in a large area with high temporal and spatial resolution.Also,night-time measurements of astronomical seeing at Dome A in Antarctica make it less challenging to locate a telescope above it,thereby giving greater access to the free atmosphere because of a thinner boundary layer.
文摘It is necessary to pay particular attention to the uncertainties that exist in an engineering problem to reduce the risk of seismic damage of infrastructures against natural hazards.Moreover,certain structural performance levels should be satisfied during strong earthquakes.However,these performance levels have been only well described for aboveground structures.This study investigates the main uncertainties involved in the performance-based seismic analysis of a multi-story subway station.More than 100 pulse-like and no pulse-like ground motions have been selected.In this regard,an effective framework is presented,based on a set of nonlinear static and dynamic analyses performed by OpenSees code.The probabilistic seismic demand models for computing the free-field shear strain of soil and racking ratio of structure are proposed.These models result in less variability compared with existing relations,and make it possible to evaluate a wider range of uncertainties through reliability analysis in Rtx software using the Monte Carlo sampling method.This work is performed for three different structural performance levels(denoted as PL1ePL3).It is demonstrated that the error terms related to the magnitude and location of earthquake excitations and also the corresponding attenuation relationships have been the most important parameters.Therefore,using a faultestructure model would be inevitable for the reliability analysis of subway stations.It is found that the higher performance level(i.e.PL3)has more sensitivity to random variables than the others.In this condition,the pulse-like ground motions have a major contribution to the vulnerability of subway stations.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.
文摘Based on the structure and working principle of rain sensors in new automatic weather stations,according to the abnormal precipitation records found in the observation business,the possible faults of rain sensors were analyzed,and treatment methods were discussed. Daily maintenance and management measures were put forward to ensure the normal operation of rain sensors and improve the quality of surface meteorological observation business.
基金partially funded by Sao Paulo Research Foundation(FAPESP),Brazil,grant numbers#2015/18808-0,#2018/23064-8,#2019/23382-2.
文摘Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.
基金funded by Major Science and Technology Projects in Gansu Province(19ZD2GA003).
文摘Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.
文摘The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).
基金supported by the National Key R&D Program of China(No.2020YFB1600701).
文摘During both daily operation and emergency evacuation,the corners of walking facilities in subway stations play an important role in efficient circulation.However,the effectiveness of the corner is difficult to assess.In this paper,a method of passenger gathering and scattering analysis based on queueing models was proposed to investigate the corner performance in subway stations.Firstly,we constructed a set of state spaces of passenger flow according to passenger density and proposed the state transition model of passenger flow.Moreover,the model of passenger flow blocking and unblocking probability were also presented.Then,to illustrate the validity of the method and model,several passenger gathering-scattering scenarios and were simulated to verify the influence of passenger distribution and facility width on passenger walking,and the blocking probability,throughput,and expected time were also analyzed under various widths of the target corridor and arrival rates.Results showed that the proposed model can reproduce the trend of walking parameters changing and the self-organizing phenomenon of'faster is lower'.With the increase of arrival rates of passengers,walking speeds of passengers decrease and the expected walking time is prolonged,and the blocking probability sharply increased when the arrival rate exceeded 7 peds/s.In addition,with change of width of the target facility,efficiency of capacity of walking circulation facility fluctuated.With the width of the target corridor enlarged by 10%,the steady state of passenger flow was less crowded.Therefore,corridor width is critical to the circulation efficiency of passengers in subway stations.The conclusions will help to develop reasonable passenger flow control plans to ease the jam and keep passengers walking safely.