期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor 被引量:4
1
作者 Bozhao Chu Nian Zhang +2 位作者 Xuli Zhai Xin Chen Yi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期593-600,共8页
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti... Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction. 展开更多
关键词 hydrogen production steam methane reforming (SMR) nickel-based catalysts MgO promoter millisecond reaction micro-channel reactor
下载PDF
Profitability Analysis of Selected Steam Methane Reforming Methods for Hydrogen Production
2
作者 Chibuzor Chinweoke Okechukwu Sunday Boladale Alabi 《Journal of Power and Energy Engineering》 2022年第8期45-53,共9页
One of the matured methods for producing hydrogen in bulk is steam methane reforming (SMR). The two commercial aspects of producing hydrogen from SMR are SMR with shift reactor (SR) and SMR with dry methane reforming ... One of the matured methods for producing hydrogen in bulk is steam methane reforming (SMR). The two commercial aspects of producing hydrogen from SMR are SMR with shift reactor (SR) and SMR with dry methane reforming (DRM). Although SMR with SR produces high hydrogen yield, it emits a large quantity of carbon dioxide (CO<sub>2</sub>). On the contrary, SMR and DRM produce low hydrogen yield but favorably emit a low quantity of CO<sub>2</sub>. However, it is not obvious which of these methods is more favourable economically. Consequently, using UNISIM Software Package, this study investigates three SMR methods namely SMR with SR, SMR with DRM and SMR with the combination of DRM and SR for the purpose of determining the most favourable route for producing hydrogen. This was done on the basis of feedstock rate of 100 kmol/hr of methane which reacted with 250 kmol/hr of steam for 8000 hrs annually using the rate of CO<sub>2</sub> and CO emissions (CO<sub>x</sub>) and the plant net profit percentage as performance indices. The profitability analysis shows that SMR/SR process is the most profitable process with a net profit percentage of 41.3%. Moreover, SMR/SR process has the highest yield and interestingly lowest CO<sub>x</sub> emission rate. It is therefore concluded that the most favourable process route, technically and economically, is SMR/SR for the production of hydrogen using methane as feedstock. 展开更多
关键词 HYDROGEN steam methane reforming Dry methane reforming Carbon Oxides
下载PDF
Efficiency analysis of sorption-enhanced method in steam methane reforming process 被引量:1
3
作者 Yaowei Hu Lu Liu +4 位作者 Kai Xu Yuncai Song Jieying Jing Huiyan Zhang Jie Feng 《Carbon Resources Conversion》 EI 2023年第2期132-141,共10页
The sorption-enhanced method can change the thermodynamic equilibrium by absorbing CO_(2).However,it also brings about the problems of high regeneration temperature of adsorbent and large regeneration energy consumpti... The sorption-enhanced method can change the thermodynamic equilibrium by absorbing CO_(2).However,it also brings about the problems of high regeneration temperature of adsorbent and large regeneration energy consumption.In order to study the impact of enhanced adsorption methods on the overall energy cost of the system in the hydrogen production process,this paper analyzes and compares steam methane reforming and reactive adsorption-enhanced steam methane reforming with the energy consumption of hydrogen production products as the evaluation index.The results showed that the energy consumption per unit hydrogen production decreased from 276.21 MJ/kmol to 131.51 MJ/kmol,and the decomposition rate of H2O increased by more than 20%after the addition of adsorption enhancement method.It is proved that the advantage of sorption enhanced method on pre-separation of CO_(2)in the product makes up for the disadvantage of energy consumption of adsorbent regeneration.In addition,the ability of the process to obtain H element is improved by the high decomposition rate of H2O,which realizes a more rational distribution of the element. 展开更多
关键词 Sorption-enhanced method steam methane reforming Reactive sorption enhanced steam methane reforming Pressure swing adsorption Process simulation
原文传递
Multi-objective optimization for membrane reactor for steam methane reforming heated by molten salt 被引量:9
4
作者 CHEN LinGen LI PengLei +2 位作者 XIA ShaoJun KONG Rui GE YanLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第6期1396-1414,共19页
A membrane reactor for steam methane reforming heated by molten salt(MS-SMRMR)is studied based on finite time thermodynamics for decreasing carbon emissions and improving hydrogen production rate(HPR).Effects of flow ... A membrane reactor for steam methane reforming heated by molten salt(MS-SMRMR)is studied based on finite time thermodynamics for decreasing carbon emissions and improving hydrogen production rate(HPR).Effects of flow directions of sweep gas and molten salt on MS-SMRMR are researched.Profiles of temperatures,HPR,and local entropy generation rates(EGRs)of MS-SMRMR are analyzed.Hybrid particle swarm optimization algorithm is utilized to obtain the minimum of specific EGR(SEGR),ratio of EGR to HPR.Multi-objective optimization about HPR maximization and EGR minimization is performed by utilizing NSGA-II.The EGR caused by the mass transfer process is the largest among all irreversible processes in the MS-SMRMR.The membrane length should be slightly shorter than the reactor length when the flow direction of sweep gas is different from that of reaction mixture.When flow directions of molten salt and sweep gas are opposite to that of reaction mixture,SEGR is the smallest.Compared with SEGR calculated by utilizing initial parameters,SEGRs after primary,twice and triple optimizations reduce by 1.2%,5.5%and 5.7%,respectively.SEGR can be further decreased by adjusting other operating parameters.Pareto front provides many optimization results,and it contains SEGR minimization.In Pareto front,an optimum decision point is obtained based on decision-making of TOPSIS,and its EGR and HPR,respectively,increase by 7.12%and13.24%,compared with those obtained by using initial parameters.The results have certain theoretical guiding significance for optimization designs of MS-SMRMR. 展开更多
关键词 finite time thermodynamics steam methane reforming membrane reactor specific entropy generation rate multiobjective optimization
原文传递
Characteristic of macroporous CeO_2-ZrO_2 oxygen carrier for chemical-looping steam methane reforming 被引量:3
5
作者 郑燕娥 祝星 +3 位作者 王华 李孔斋 王禹皓 魏永刚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第9期842-848,共7页
Chemical-looping steam methane reforming (CL-SMR) is a novel process towards the production of pure hydrogen and syngas, consisting ofa syngas production reaction and a hydrogen production reaction. Macroporous CeQ-... Chemical-looping steam methane reforming (CL-SMR) is a novel process towards the production of pure hydrogen and syngas, consisting ofa syngas production reaction and a hydrogen production reaction. Macroporous CeQ-ZrO2 oxygen carders with different pore sizes prepared by colloidal crystal templating method and characterized by techniques of scalming electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and temperature pro- grammed reduction (H2-TPR) were tested in CL-SMR process. For comparison, nonporous CeO2-ZrO2 oxygen carrier prepared by precipitation method was also investigated. It was found that macroporous CeO2-ZrO2 oxygen carriers owned higher reducibility and reactivity in CL-SMR process than nonporous samples. For the macroporous CeO2-ZrO2 sample, the decline of pore size could im- prove the reducibility and reactivity. The macroporous sample with a pore size of 100 nm (labeled as Ce-Zr-100) showed the highest performance for the co-production of syngas and hydrogen during the successive CL-SMR redox cycles. After 10 redox cycles, it still retained good porous structure and reducibility. It was found that the porous structure could accelerate the oxygen release from bulk to surface, leading to a good mobility of oxygen and higher reducibility. In addition, it was also favorable for diffusion and penetration of methane and water steam into the sample particles to accelerate the reaction rate. 展开更多
关键词 rare earths chemicaMooping steam methane reforming macroporous CeO2-ZrO2 oxygen carrier hydrogen SYNGAS
原文传递
Prediction of sorption enhanced steam methane reforming products from machine learning based soft-sensor models
6
作者 Paula Nkulikiyinka Yongliang Yan +2 位作者 Fatih Gülec Vasilije Manovic Peter T.Clough 《Energy and AI》 2020年第2期157-166,共10页
Carbon dioxide-abated hydrogen can be synthesised via various processes,one of which is sorption enhanced steam methane reforming(SE-SMR),which produces separated streams of high purity H_(2) and CO_(2).Properties of ... Carbon dioxide-abated hydrogen can be synthesised via various processes,one of which is sorption enhanced steam methane reforming(SE-SMR),which produces separated streams of high purity H_(2) and CO_(2).Properties of hydrogen and the sorbent material hinder the ability to rapidly upscale SE-SMR,therefore the use of artificial intelligence models is useful in order to assist scale up.Advantages of a data driven soft-sensor model over ther-modynamic simulations,is the ability to obtain real time information dependent on actual process conditions.In this study,two soft sensor models have been developed and used to predict and estimate variables that would otherwise be difficult direct measured.Both artificial neural networks and the random forest models were devel-oped as soft sensor prediction models.They were shown to provide good predictions for gas concentrations in the reformer and regenerator reactors of the SE-SMR process using temperature,pressure,steam to carbon ratio and sorbent to carbon ratio as input process features.Both models were very accurate with high R^(2) values,all above 98%.However,the random forest model was more precise in the predictions,with consistently higher R^(2) values and lower mean absolute error(0.002-0.014)compared to the neural network model(0.005-0.024). 展开更多
关键词 Machine learning Artificial neural network Soft sensor Sorption enhanced steam methane reforming Calcium looping
原文传递
Hydrogen and syngas production from two-step steam reforming of methane using CeO_2 as oxygen carrier 被引量:5
7
作者 Xing Zhu, Hua Wang YonggangWei Kongzhai Li Xianming Cheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期281-286,共6页
CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is di... CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is directly converted to syngas at a H2/CO ratio close to 2 : 1 at a high temperature (above 750 °C) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 °C in methane isothermal reaction. CeO2?δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 °C; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2). Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2. 展开更多
关键词 two-step steam reforming of methane CEO2 HYDROGEN SYNGAS redox cycle
下载PDF
Tuning combined steam and dry reforming of methane for “metgas”production: A thermodynamic approach and state-of-the-art catalysts 被引量:5
8
作者 Karam Jabbour 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期54-91,I0003,共39页
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano... Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations. 展开更多
关键词 Combined steam and dry reforming of methane Thermodynamic equilibrium analysis "Metgas"production Nickel-based catalysts Heterogeneous catalysis Structure-activity relationship
下载PDF
Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors: Catalytic activity and reaction kinetics 被引量:1
9
作者 祁阳 程振民 周志明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期76-85,共10页
Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared ... Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by incipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and internal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overall conversion of CH4 and the conversion of CH4 to CO2were strongly influenced by reaction temperature, residence time of reactants as well as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment(1989)fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamically. 展开更多
关键词 methane steam reforming HYDROGEN HYDROTALCITE CATALYST KINETICS
下载PDF
Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor 被引量:1
10
作者 P. Hacarlioglu S. T. Oyama 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第2期73-81,共9页
The effects of temperature and pressure on the steam reforming of methane (CH4+H2O→← 3H2+CO) were investigated in a membrane reactor (MR) with a hydrogen permeable membrane. The studies used a novel silica-bas... The effects of temperature and pressure on the steam reforming of methane (CH4+H2O→← 3H2+CO) were investigated in a membrane reactor (MR) with a hydrogen permeable membrane. The studies used a novel silica-based membrane prepared by using the chemical vapor deposition (CVD) technique with a permeance for H2 of 6.0×10^-8 mol·m^-2.s^-1.Pa^-1 at 923 K. The results in a packed-bed reactor (PBR) were compared to those of the membrane reactor at various temperatures (773-923 K) and pressures (1-20 atm, 101.3-2026.5 kPa) using a commercial Ni/MgAl2O4 catalyst. The conversion of methane was improved significantly in the MR by the countercurrent removal of hydrogen at all temperatures and allowed product yields higher than the equilibrium to be obtained. Pressure had a positive effect on the hydrogen yield because of the increase in driving force for the permeance of hydrogen. The yield of hydrogen increased with pressure and reached a value of 73× 10^-6 mol·g^-1 .s^-1 at 2026.5 kPa and 923 K which was higher by 108% than the value of 35×10^-6 mol·g^-1.s^-1 obtained for the equilibrium yield. The results obtained with the silica-based membrane were similar to those obtained with various other membranes as reported in the literature. 展开更多
关键词 steam reforming of methane silica-based membrane membrane reactor HYDROGEN
下载PDF
Methane Steam Reforming on Supported Nickel, Effect of Nickel Content for Product Hydrogen 被引量:1
11
作者 Akila Belhadi Souhila Boumaza +2 位作者 Amar Djadoun Mohamed Trari Ouiza Cherifi 《Open Journal of Physical Chemistry》 2016年第2期34-41,共8页
The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporiz... The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporization the solid is calcined at 500°C for 6 h. The catalysts were characterized by X-ray diffraction (XRD) and BET method, scanning electron microscopy (SEM) and temperature programmed reduction (TPR). The XRD patterns revealed the NiO phase for all calcined catalysts. The chemical analysis confirmed the theoretical values of nickel. The catalysts were pre-treated under hydrogen at 500°C in situ, overnight before testing for the steam reforming of methane reaction (CH<sub>4</sub>/H<sub>2</sub>O/Ar = 10/10/80) in the temperature range (475°C - 650°C) under atmospheric pressure. The activities of both catalysts were investigated in a fixed-bed reactor for the Methane Steam Reforming (MSR) reaction. Globally, it was shown that the catalyst 10% nickel content has an important effect on the catalytic performances of solids i.e. the better results of hydrogen production were obtained with 10% wt. Ni/ZnO (28 ′ 10-<sup>3</sup> mol/g catalyst). 展开更多
关键词 Nickel Catalysts ZNO methane steam reforming HYDROGEN
下载PDF
Multi-Physics Modeling Assisted Design of Non-Coking Anode for Planar Solid Oxide Fuel Cell Fueled by Low Steam Methane 被引量:1
12
作者 Jiang Zhu Bao-xuan Wang Zi-jing Lin 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期661-666,735,共7页
Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-base... Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-based anode should be prevented before the technology becomes a reality.A multi-physics fully coupled model is employed to simulate the operations of SOFCs fueled by low steam methane.The multi-physics model produces I-V relations that are in excellent agreement with the experimental results.The multi-physics model and the experimental non-coking current density deduced kinetic carbon activity criterion are used to examine the effect of operating parameters and the anode diffusion barrier layer on the propensity of carbon deposition.The interplays among the fuel utilization ratio,current generation,thickness of the barrier layer and the cell operating voltage are revealed.It is demonstrated that a barrier layer of 400μm thickness is an optimal and safe anode design to achieve high power density and non-coking operations.The anode structure design can be very useful for the development of high efficiency and low cost SOFC technology. 展开更多
关键词 Carbon activity methane steam reformation Diffusion barrier layer Fuel utilization ratio Non-coking condition
下载PDF
Simultaneous syngas production with different H_2/CO ratio in a multi-tubular methane steam and dry reformer by utilizing of CLC
13
作者 Mohsen Abbasi Mehdi Farniaei +1 位作者 Mohammad Reza Rahimpour Alireza Shariati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期54-64,共11页
For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized f... For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized for the elimination of CO2 emission to atmosphere during simultaneous syngas production with different H2/CO ratio in steam reforming of methane (SR) and dry reforming of methane (DR) in a CLC-SR-DR configuration. In CLC-SR-DR with 184 reformer tubes (similar to an industrial scale steam reformer in Zagros Petrochemical Company, Assaluyeh, Iran), DR reaction occurs over Rh-based catalysts in 31 tubes. Also, SR reaction is happened over Ni-based catalysts in 153 tubes. CLC via employment of Mn-based oxygen carriers supplies heat for DR and SR reactions and produces CO2 and H2O as raw materials simultaneously. A steady state heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-SR-DR configuration. Simulation results show that combustion efficiency reached 1 at the outlet of fuel reactor (FR). Therefore, pure CO2 and H2O can be recycled to DR and SR sides, respectively. Also, CH4 conversion reached 0.2803 and 0.7275 at the outlet of SR and DR sides, respectively. Simulation results indicate that, 3223 kmol.h-l syngas with a H2/CO ratio equal to 9.826 was produced in SR side of CLC-SR-DR. After that, 1844 kmol.h-1 syngas with a H2/CO ratio equal to 0.986 was achieved in DR side of CLC-SR-DR. Results illustrate that by increasing the number of DR tubes to 50 tubes and considering 184 fixed total tubes in CLC-SR-DR, CH4 conversions in SR and DR sides decreased 2.69% and 3.31%, respectively. However, this subject caused total syngas production in SR and DR sides (in all of 184 tubes) enhance to 5427 kmol-h-1. Finally, thermal and molar behaviors of the proposed configuration demonstrate that CLC-SR-DR is applicable for simultaneous syngas production with high and low Hx/CO ratios in an environmental friendly process. 展开更多
关键词 chemical looping combustion (CLC) dry reforming of methane (DR) steam reforming of methane carbon dioxide capturing syngas produc-tion
下载PDF
Hydrogen and syngas production from two-step steam reforming of methane over CeO_2-Fe_2O_3 oxygen carrier 被引量:17
14
作者 祝星 王华 +2 位作者 魏永刚 李孔斋 程显名 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第6期907-913,共7页
Two-step steam reforming of methane (SRM) is a novel chemical looping process towards the production of pure hydrogen and syngas (synthesis gas), consisting of a syngas production step and a water-splitting step. Rene... Two-step steam reforming of methane (SRM) is a novel chemical looping process towards the production of pure hydrogen and syngas (synthesis gas), consisting of a syngas production step and a water-splitting step. Renewable energy can be used to drive this process for hydrogen production, especially solar energy. CeO2-Fe2O3 complex oxide oxygen carrier was prepared by the impregnation method and characterized by means of X-ray diffractometer (XRD), Raman spectroscopy (Raman) and hydrogen programmed reduction (H2-TPR). CH4 temperature programmed and isothermal reactions were adopted to test syngas production reactivity, and water splitting reaction was employed to investigate water-splitting activity. Moreover, two-step SRM performance was evaluated by a successive redox cycle. The results showed that CO-uncontaminated H2 and highly selective syngas (with H2/CO ratio close to 2) could be respectively obtained from two steps, and CeFeO3 formation was found in the first redox cycle and proved to be enhanced by the redox treatment. After 10 successive cycles, obvious CeFeO3 phase was detected, which may be responsible for favorable successive redox cycle performances. 展开更多
关键词 two-step steam reforming of methane CeO2-Fe2O3 oxygen carrier redox cycle HYDROGEN SYNGAS rare earths
原文传递
Energy and Parameter Analysis of SOFC System for Hydrogen Production from Methane Steam Reforming 被引量:2
15
作者 DENG Meilong LIU Jinyi +2 位作者 ZHANG Xiaosong LI Jinsong FU Lirong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2088-2110,共23页
In this paper, an integrated system of solid oxide fuel cell(SOFC) and methane steam reforming for hydrogen production is proposed. The mathematical model of the coupled integrated system is studied by COMSOL and Aspe... In this paper, an integrated system of solid oxide fuel cell(SOFC) and methane steam reforming for hydrogen production is proposed. The mathematical model of the coupled integrated system is studied by COMSOL and Aspen software, and the energy analysis of the integrated system is carried out. The system recovers and reuses the waste heat of the SOFC stack through the heat exchanger, which can realize the cascade efficient use of energy. By adjusting the different reforming temperatures, steam-to-carbon ratio and SOFC operating temperature of methane steam reforming to produce hydrogen, the parameters that have a greater impact on the system are studied. The research results show that as the steam-to-carbon ratio and reformer operating temperature increase, the net output power and efficiency of the system increase. When the fuel cell operating temperature is 800℃, the output power and efficiency of the system reach the maximum values of 899.93 W and 52.52%, respectively. Increasing the operating temperature of SOFC helps to improve the efficiency of fuel cells, but the efficiency of the integrated system of methane steam reforming hydrogen production and SOFC first increases and then decreases. This system can realize the direct coupling between the SOFC reactor subsystem and the methane steam reforming hydrogen production system under optimized conditions, which has reference significance for the actual operating conditions of the coupled system. 展开更多
关键词 SOFC methane steam reformer HYDROGEN mathematical model system optimization
原文传递
An efficient technique for improving methanol yield using dual C02 feeds and dry methane reforming 被引量:1
16
作者 Yang Su Liping Lü +1 位作者 Weifeng Shen Shun'an Wei 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第4期614-628,共15页
Steam methane reforming(SMR)-based methanol synthesis plants utilizing a single CO2 feed represent one of the predominant technologies for improving methanol yield and CO2 utilization.However,SMR alone cannot achieve ... Steam methane reforming(SMR)-based methanol synthesis plants utilizing a single CO2 feed represent one of the predominant technologies for improving methanol yield and CO2 utilization.However,SMR alone cannot achieve full CO2 utilization,and a high water content accumulates if CO2 is only fed into the methanol reactor.In this study,a process integrating SMR with dry methane reforming to improve the conversion of both methane and CO2 is proposed.We also propose an innovative methanol production approach in which captured CO2 is introduced into both the SMR process and the recycle gas of the methanol synthesis loop.This dual CO2 feed approach aims to optimize the stoichio-metric ratio of the reactants.Comparative evaluations are carried out from a techno-economic point of view,and the proposed process is demonstrated to be more efficient in terms of both methanol productivity and CO2 utilization than the existing stand-alone natural gas-based methanol process. 展开更多
关键词 methanol synthesis CO2 utilization dry methane reforming steam methane reforming process design
原文传递
Preparation of a mesoporous sorption complex catalyst and its evaluation in reactive sorption enhanced reforming
17
作者 Fan ZHANG Qi TANG Su-fang WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第12期915-922,共8页
A mesoporous sorption complex catalyst was prepared by pore-forming modification and evaluated by the COz reactive sorption enhanced reforming (ReSER) process, which is used to produce hydrogen from methane. Three s... A mesoporous sorption complex catalyst was prepared by pore-forming modification and evaluated by the COz reactive sorption enhanced reforming (ReSER) process, which is used to produce hydrogen from methane. Three samples of polyethylene glycol (PEG) with molecular weights between 2000 and 20 000 were added as templates into a mixed slurry to create catalysts with different pore properties by further formation and calcination. The pore characteristics determined by Brunauer- Emmett-Teller (BET) analysis showed that one of the mesoporous catalysts, named M-NiAICa-6000, had a pore size of 9.2 nm and a surface area of 70.52 m2/g and the CO2 sorption capacity of this catalyst was 44% higher than that of the catalyst without the PEG 6000 modification. The catalyst was evaluated in the ReSER process in a fixed-bed reactor system at 0.1 MPa and 600 C with an H20/CH4 molar ratio of 4. An H2 concentration of 94.2% and a CH4 conversion of 86.0% were obtained at a carbon space velocity of 1700 h 1 while CO2 was hardly detected. 展开更多
关键词 HYDROGEN Ni catalyst MESOPOROUS steam methane reforming CO2 sorption
原文传递
Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane 被引量:6
18
作者 WU Yiyang SHI Yixiang +1 位作者 CAI Ningsheng NI Meng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第3期203-212,共10页
A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell(SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electro... A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell(SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m^2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance. 展开更多
关键词 Solid Oxide Fuel Cell methane steam reforming MODELLING Smoothing Effect Pre-reforming Percentage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部