A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-...A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.展开更多
A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowe...A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repower- ing has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double- pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.展开更多
In this paper the effects of the condenser design parameters(such as turbine inlet condition.turbine power and condenser pressure) on heat transfer area,cooling water flow-rate.condenser cost and specific energy gener...In this paper the effects of the condenser design parameters(such as turbine inlet condition.turbine power and condenser pressure) on heat transfer area,cooling water flow-rate.condenser cost and specific energy generation cost are studied for surface type condenser.The results are given in the text and also shown as diagrams.展开更多
A generalized formulation for short-term scheduling of steam power system in iron and steel industry under the time-of-use(TOU)power price was presented,with minimization of total operational cost including fuel cos...A generalized formulation for short-term scheduling of steam power system in iron and steel industry under the time-of-use(TOU)power price was presented,with minimization of total operational cost including fuel cost,equipment maintenance cost and the charge of exchange power with main grid.The model took into account the varying nature of surplus byproduct gas flows,several practical technical constraints and the impact of TOU power price.All major types of utility equipments,involving boilers,steam turbines,combined heat and power(CHP)units,and waste heat and energy recovery generators(WHERG),were separately modeled using thermodynamic balance equations and regression method.In order to solve this complex nonlinear optimization model,a new improved particle swarm optimization(IPSO)algorithm was proposed by incorporating time-variant parameters,a selfadaptive mutation scheme and efficient constraint handling strategies.Finally,a case study for a real industrial example was used for illustrating the model and validating the effectiveness of the proposed approach.展开更多
Boiler fan is the main power consumption device in thermal power units and the induced draft fan accounted for the largest proportion. Reducing the energy consumption rate of induced draft fan is the main path to redu...Boiler fan is the main power consumption device in thermal power units and the induced draft fan accounted for the largest proportion. Reducing the energy consumption rate of induced draft fan is the main path to reduce the power consumption rate of thermal power units. The induce fan driven by small turbine is greatly effective for reducing the power consumption rate and the supply coal consumption rate in large thermal power plant. Take 1000 MW power units for example, the selection of steam source for steam turbine were discussed and economic performance of the unit under different steam source was compared in this paper. The result shows that compared with the motor driven method, there is about 1.6 g/kWh decrease in supply coal consumption rate driven by the fourth stage extraction steam;whereas there is about 2.5 g/kWh decrease in supply coal consumption rate driven by the fifth stage extraction steam.展开更多
The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics...The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant.展开更多
Considering generator rotor and valve by external disturbances for turbine regulating system, the nonlinear large disturbance attenuation controller and parameter updating law of turbine speed governor system are desi...Considering generator rotor and valve by external disturbances for turbine regulating system, the nonlinear large disturbance attenuation controller and parameter updating law of turbine speed governor system are designed using backstepping method. The controller not only considers transmission line parameter uncer-tainty, and has attenuated the influences of large external disturbances on system output. The nonlinear con-troller does not have the sensitivity to the influences of external disturbances, but also has strong robustness for system parameters variation, which is because of the transmission line uncertainty being considered in internal disturbances. The simulation results show that the control effect of the large disturbance attenuation controller more advantages by comparing with the control performance of conventional nonlinear robust controller.展开更多
The Hangzhou Steam Turbine Power(Group) Co. Ltd (HSTPC) wastransformed into a corporation solelyowned by the state and put into operation inJune 1995. achieving a sales income of overRMB 260 million in the same year (...The Hangzhou Steam Turbine Power(Group) Co. Ltd (HSTPC) wastransformed into a corporation solelyowned by the state and put into operation inJune 1995. achieving a sales income of overRMB 260 million in the same year (11.59%up from the previous year) and pretax profitsof RMB 41.5 million (a 7.68% increase overthe previous year), of which RMB 21.5 millionwere profits (an increase of 18.44% over theprevious year). The leading product of theHSTPC -- the industrial steam turbine --展开更多
The steam turbine is a prime mover that converts kinetic energy in steam into rotational mechanical energy through the impact or reaction of the steam against the blades. The aim of this study is to design a steam tur...The steam turbine is a prime mover that converts kinetic energy in steam into rotational mechanical energy through the impact or reaction of the steam against the blades. The aim of this study is to design a steam turbine for a small scale steam power plant with target of producing electricity. The turbine is driven by the heat energy from palm kernel shells as a renewable energy source obtained at a lower or no cost. The study was concentrated on design of turbine elements and its validation using computer packages. Specifically, the microturbine design was limited to design, modeling, simulation and analysis of the rotor, blades and nozzle under the palm kernel shell as fuel for the micro power plant. In blade design, stress failures, efficiency and blade angle parameters were considered. In casing volume design, the overall heat transfer and mean temperature, and different concepts were applied. The thermal distribution on stator and rotor was considered in order to determine its level of tolerance. The design software packages used for design validation were Solidworks and Comsol Multiphysics for analysis. Simulation results showed that the designed steam turbine can adequately tolerate change in stress/load, torsion/compression, temperature and speeds.展开更多
The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storag...The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below.展开更多
This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an impo...This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).展开更多
A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classica...A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.展开更多
This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste e...This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.展开更多
This study work related with floating of an idea about conversion of reclaimed thermal energy from domestic cooking system into the electrical power. There were different techniques in use worldwide for harnessing the...This study work related with floating of an idea about conversion of reclaimed thermal energy from domestic cooking system into the electrical power. There were different techniques in use worldwide for harnessing the energy into the appropriate useful work and also to create efficient system for the energy conversion process. The ignorance in this regard might be due to the reason that this wastage did not cost too much for a single home on per day or per month basis, but it could be a ample amount of cost if integrated this loss for a whole city or on yearly bases for a single home. The idea in this work depended upon the recovery of waste heat from Pressure Cookers used in the houses for the domestic cooking purposes, and optimized the reclaimed thermal energy for the conversion into electric power. This research work related with losses of energy discussed and analyzed on the basis of thermo dynamically regarding (a) the wastage of thermal energy escaped through the system due to the spreading of exhaust vapors and taking away significant amount of thermal energy;(b) losses of enthalpy through the dissipate steam;(c) heat losses in the tubing from the Pressure Cooker to the turbine;(d) electric power produces from the system. In this work, new methods were advised, in order to reduce the losses of thermal energy from the system. It would open the venue for researchers to promote this new idea in near future.展开更多
The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-100...The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-1000 a comprehensive, passive-mode environmental protection system of decontamination of the radioactive steam-air mixture from the containment and the intercontainment area was suggested. This system includes the “wet” stage (scrubbers, etc.), the “dry” stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For WWER-440/230 NPPs three protection levels: 1) a jet-vortex condenser;2) the spray system;3) a sorption module were suggested and installed. For modern designs of new generation NPPs, which do not provide for pressure release systems, a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable, was proposed and after modernization was installed at the KudanKulam NPP (India).展开更多
文摘A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve(SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods(STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.
文摘A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repower- ing has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double- pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.
文摘In this paper the effects of the condenser design parameters(such as turbine inlet condition.turbine power and condenser pressure) on heat transfer area,cooling water flow-rate.condenser cost and specific energy generation cost are studied for surface type condenser.The results are given in the text and also shown as diagrams.
基金Sponsored by National Natural Science Foundation of China(51304053)International Science and Technology Cooperation Program of China(2013DFA10810)
文摘A generalized formulation for short-term scheduling of steam power system in iron and steel industry under the time-of-use(TOU)power price was presented,with minimization of total operational cost including fuel cost,equipment maintenance cost and the charge of exchange power with main grid.The model took into account the varying nature of surplus byproduct gas flows,several practical technical constraints and the impact of TOU power price.All major types of utility equipments,involving boilers,steam turbines,combined heat and power(CHP)units,and waste heat and energy recovery generators(WHERG),were separately modeled using thermodynamic balance equations and regression method.In order to solve this complex nonlinear optimization model,a new improved particle swarm optimization(IPSO)algorithm was proposed by incorporating time-variant parameters,a selfadaptive mutation scheme and efficient constraint handling strategies.Finally,a case study for a real industrial example was used for illustrating the model and validating the effectiveness of the proposed approach.
文摘Boiler fan is the main power consumption device in thermal power units and the induced draft fan accounted for the largest proportion. Reducing the energy consumption rate of induced draft fan is the main path to reduce the power consumption rate of thermal power units. The induce fan driven by small turbine is greatly effective for reducing the power consumption rate and the supply coal consumption rate in large thermal power plant. Take 1000 MW power units for example, the selection of steam source for steam turbine were discussed and economic performance of the unit under different steam source was compared in this paper. The result shows that compared with the motor driven method, there is about 1.6 g/kWh decrease in supply coal consumption rate driven by the fourth stage extraction steam;whereas there is about 2.5 g/kWh decrease in supply coal consumption rate driven by the fifth stage extraction steam.
文摘The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant.
文摘Considering generator rotor and valve by external disturbances for turbine regulating system, the nonlinear large disturbance attenuation controller and parameter updating law of turbine speed governor system are designed using backstepping method. The controller not only considers transmission line parameter uncer-tainty, and has attenuated the influences of large external disturbances on system output. The nonlinear con-troller does not have the sensitivity to the influences of external disturbances, but also has strong robustness for system parameters variation, which is because of the transmission line uncertainty being considered in internal disturbances. The simulation results show that the control effect of the large disturbance attenuation controller more advantages by comparing with the control performance of conventional nonlinear robust controller.
文摘The Hangzhou Steam Turbine Power(Group) Co. Ltd (HSTPC) wastransformed into a corporation solelyowned by the state and put into operation inJune 1995. achieving a sales income of overRMB 260 million in the same year (11.59%up from the previous year) and pretax profitsof RMB 41.5 million (a 7.68% increase overthe previous year), of which RMB 21.5 millionwere profits (an increase of 18.44% over theprevious year). The leading product of theHSTPC -- the industrial steam turbine --
文摘The steam turbine is a prime mover that converts kinetic energy in steam into rotational mechanical energy through the impact or reaction of the steam against the blades. The aim of this study is to design a steam turbine for a small scale steam power plant with target of producing electricity. The turbine is driven by the heat energy from palm kernel shells as a renewable energy source obtained at a lower or no cost. The study was concentrated on design of turbine elements and its validation using computer packages. Specifically, the microturbine design was limited to design, modeling, simulation and analysis of the rotor, blades and nozzle under the palm kernel shell as fuel for the micro power plant. In blade design, stress failures, efficiency and blade angle parameters were considered. In casing volume design, the overall heat transfer and mean temperature, and different concepts were applied. The thermal distribution on stator and rotor was considered in order to determine its level of tolerance. The design software packages used for design validation were Solidworks and Comsol Multiphysics for analysis. Simulation results showed that the designed steam turbine can adequately tolerate change in stress/load, torsion/compression, temperature and speeds.
文摘The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below.
文摘This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).
基金This work was supported by the National Natural Science Foundation of China (No. 60574013).
文摘A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.
文摘This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.
文摘This study work related with floating of an idea about conversion of reclaimed thermal energy from domestic cooking system into the electrical power. There were different techniques in use worldwide for harnessing the energy into the appropriate useful work and also to create efficient system for the energy conversion process. The ignorance in this regard might be due to the reason that this wastage did not cost too much for a single home on per day or per month basis, but it could be a ample amount of cost if integrated this loss for a whole city or on yearly bases for a single home. The idea in this work depended upon the recovery of waste heat from Pressure Cookers used in the houses for the domestic cooking purposes, and optimized the reclaimed thermal energy for the conversion into electric power. This research work related with losses of energy discussed and analyzed on the basis of thermo dynamically regarding (a) the wastage of thermal energy escaped through the system due to the spreading of exhaust vapors and taking away significant amount of thermal energy;(b) losses of enthalpy through the dissipate steam;(c) heat losses in the tubing from the Pressure Cooker to the turbine;(d) electric power produces from the system. In this work, new methods were advised, in order to reduce the losses of thermal energy from the system. It would open the venue for researchers to promote this new idea in near future.
文摘The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-1000 a comprehensive, passive-mode environmental protection system of decontamination of the radioactive steam-air mixture from the containment and the intercontainment area was suggested. This system includes the “wet” stage (scrubbers, etc.), the “dry” stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For WWER-440/230 NPPs three protection levels: 1) a jet-vortex condenser;2) the spray system;3) a sorption module were suggested and installed. For modern designs of new generation NPPs, which do not provide for pressure release systems, a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable, was proposed and after modernization was installed at the KudanKulam NPP (India).