In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or ...In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.展开更多
Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional ...Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional SRS microscopes,providing with high lateral and axial spatial resolution.Because of the tight focus of the Gaussian beam,such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues.The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent.Here,we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method.The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method.We model the scattering tissues containing chemicals,calculate the SRS signals stimulated by two Bessel beams,discuss the influence of the fractal model parameters on signal generation,and compare them with those generated by the Gaussian beams.The results show that,even though the modeling parameters have great influence on SRS signal generation,the Bessel beams-based SRS can generate signals in deeper scattering tissues.展开更多
Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multipl...Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multiple-pass cell configuration. The SRS with the multiple-pass cell configuration is found to be very efficient for reduction of threshold of the first Stokes (S1). Due to the coherent SRS (CSRS) process, the multiple-pass cell configuration is more effective for reduction of the threshold for the second Stokes (S2) SRS and for increasing the conversion efficiency of S2. This contributes to the relatively low conversion efficiency of S1 for the multiple-pass cell configuration. Multiple-pass cell SRS is also found to be very effective for improving the beam quality and the stability of S1.展开更多
Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating consider...Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating considerably in the linear stage.However,different components of the incoherent light can be coupled by the Langmuir waves,so that stimulated Raman backward scattering can develop.When the bandwidth of incoherent light is larger than the Langmuir wave frequency,forward SRS can be seeded between different components of the incoherent light.The incoherent light can only increase the time duration for nonlinear saturation but cannot diminish the saturation level obviously.展开更多
The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm^-1, pulse-width (FWHM) 6.5 ns). Due ...The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm^-1, pulse-width (FWHM) 6.5 ns). Due to the heat release from vibrationally excited particles, SRS processes often suffer from the thermal defocusing effect (TDE). In view of 6.5 ns laser pulse width is much shorter than the vibrational relaxation time of CH4 molecules, TDE can only affect the SRS processes afterwards. In the cases of low laser repetition, TDE will be not serious, because it will be removed by the thermal diffusion in Raman medium before the next pulse arrives. At the laser repetition rate 2 Hz, CH4 pressure 1.1 MPa and pump laser energy 95 mJ, the quantum conversion efficiency of backward first-Stokes (BS1) has attained 73%. This represents the highest first-stokes conversion efficiency in CH4. Furthermore, due to the relaxation oscillation, the BS1 pulses are narrowed to about 1.2 ns. As a result, the BS1 peak power turns out to be 2.7 times that of the pump. Its beam quality is also much better and is only slightly affected by TDE. This reason is that BS1 represents a wave-front-reversed replica of the pump beam, which can compensate the thermal distortions in Raman amplify process. Under the same conditions, but pump laser repetition rate as 10 Hz, the conversion efficiency of BS1 goes down to 36% due to TDE. From this study, we expect that a well-behaved 630 nm Raman laser may be designed by using a closed CH4/He circulating-cooling system, which may have some important applications.展开更多
Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the...Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.展开更多
Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combinin...Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations.The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated,which is consistent with our theoretical analysis quantitatively.Maxwellian distribution,flattened distribution,and bi-Maxwellian distribution are studied in detail,which represent three typical stages of SRS.We also demonstrate the effects of plateau width,hot-electron fraction,hot-to-cold electron temperature ratio,and collisional damping on the Landau damping and growth rate.They gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.展开更多
Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of th...Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of the pump wave, while the forward stimulated Raman scattering (F-SRS) subsequently develops and is located at the rear part of the slab. Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities. The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities. The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.展开更多
When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excit...When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excited power reaches the Excitationthreshold, the intensity of Stokes light strongly increases.Meanwhile an anti- Stokes light at 495 nm and multiple order butsmall Stokes peaks occur. The intensity of Stokes light is muchlarger than that of anti-Stokes.展开更多
We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power...We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.展开更多
Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. T...Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.展开更多
The competition between the stimulated resonance Raman scattering (SRRS) of Rhodamine B (RhB) and the stimulated Raman scattering (SRS) of ethanol (C2H50H) is observed at the RhB in C2H5OH solution. For differ...The competition between the stimulated resonance Raman scattering (SRRS) of Rhodamine B (RhB) and the stimulated Raman scattering (SRS) of ethanol (C2H50H) is observed at the RhB in C2H5OH solution. For different concentrations of the solution, the peak wavelengths of the SRRS, the amplified spontaneous emission (ASE), the fluorescence and the absorption of RhB are different. The SRRS of RhB and the SRS of C2H50H are simultaneously generated when the concentration of the solution is 10-5 mol/L and the energy of the excitation laser is 20.4 mJ. Otherwise, only either the SRRS of RhB or the SRS of C2H5OH is generated. The SRRS can be amplified by the ASE gain when the SRRS is near the peak of the ASE, and the peak wavelength of the SRRS coincides with the wavelength of the maximal intensity ASE.展开更多
Three-dimensional(3D)imaging is essential for understanding intricate biological and biomedical systems,yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong s...Three-dimensional(3D)imaging is essential for understanding intricate biological and biomedical systems,yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong scattering in turbid media.Here,we present a unique phase-modulated stimulated Raman scattering tomography(PM-SRST)technique to achieve rapid label-free 3D chemical imaging in cells and tissue.To accomplish PM-SRST,we utilize a spatial light modulator to electronically manipulate the focused Stokes beam along the needle Bessel pump beam for SRS tomography without the need for mechanical z scanning.We demonstrate the rapid 3D imaging capability of PM-SRST by real-time monitoring of 3D Brownian motion of polystyrene beads in water with 8.5 Hz volume rate,as well as the instant biochemical responses to acetic acid stimulants in MCF-7 cells.Further,combining the Bessel pump beam with a longer wavelength Stokes beam(NIR-II window)provides a superior scattering resilient ability in PM-SRST,enabling rapid tomography in deeper tissue areas.The PM-SRST technique providestwofold enhancement in imaging depth in highly scattering media(e.g.,polymer beads phantom and biotissue like porcine skin and brain tissue)compared with conventional point-scan SRS.We also demonstrate the rapid 3D imaging ability of PM-SRST by observing the dynamic diffusion and uptake processes of deuterium oxide molecules into plant roots.The rapid PM-SRST developed can be used to facilitate label-free 3D chemical imaging of metabolic activities and functional dynamic processes of drug delivery and therapeutics in live cells and tissue.展开更多
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
Transverse stimulated Raman scattering(TSRS)in potassium dihydrogen phosphate(KDP)and deuterated potassium dihydrogen phosphate(DKDP)plates for large-aperture,inertial confinement fusion(ICF)-class laser systems is a ...Transverse stimulated Raman scattering(TSRS)in potassium dihydrogen phosphate(KDP)and deuterated potassium dihydrogen phosphate(DKDP)plates for large-aperture,inertial confinement fusion(ICF)-class laser systems is a well-recognized limitation giving rise to parasitic energy conversion and laser-induced damage.The onset of TSRS is manifested in plates exposed to the ultraviolet section of the beam.TSRS amplification is a coherent process that grows exponentially and is distributed nonuniformly in the crystal and at the crystal surfaces.To understand the growth and spatial distribution of TSRS energy in various configurations,a modeling approach has been developed to simulate the operational conditions relevant to ICF-class laser systems.Specific aspects explored in this work include(i)the behavior of TSRS in large-aperture crystal plates suitable for third-harmonic generation and use as wave plates for polarization control in current-generation ICF-class laser system configurations;(ii)methods,and their limitations,of TSRS suppression and(iii)optimal geometries to guide future designs.展开更多
An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in ...An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in a BaWO4 crystal in a highly transient regime of interaction.The effect takes place in the range of pump pulse energy from~0.1 to~0.5μJ with maximum energy conversion efficiency up to 35%at 0.2μJ.The nature of the observed effects is explained by interference of SRS and self-phase modulation,where the latter is related to a noninstantaneous orientational Kerr nonlinearity in the BaWO4 crystal.展开更多
With the increasing power of fiber lasers,single chirped and tilted fiber Bragg gratings(CTFBGs)cannot completely mitigate continuously enhanced system-excited stimulated Raman scattering(SRS).Although improving the l...With the increasing power of fiber lasers,single chirped and tilted fiber Bragg gratings(CTFBGs)cannot completely mitigate continuously enhanced system-excited stimulated Raman scattering(SRS).Although improving the loss rate of a single CTFBG or cascading multiple CTFBGs can provide better suppression of the stronger SRS,excessive insertion loss may cause significant attenuation of the output power.Confronting the challenge,we firstly present an SRS mitigation method based on a dual-structure fiber grating in this paper.The dual-structure fiber grating comprises a CTFBG and a fiber Bragg grating structure,which were designed and fabricated on a passive 25/400 double-clad fiber.To evaluate the performance of the grating,a 3 kW fiber master oscillator power amplifier laser is established.The experimental results demonstrate that the SRS mitigation rate of the grating is greater than 30 dB(99.9%),whereas the insertion loss is only approximately 3%,thus allowing for minimal deterioration of the output power.This solves the contradiction between high suppression rate and high insertion loss faced by CTFBGs,which in turn makes dualstructure fiber gratings particularly suitable for mitigating SRS in 3-5 kW high-power fiber lasers.展开更多
In this work,we experimentally investigate the dependence of the stimulated Raman scattering(SRS)effect on the seed linewidth of a high-power nanosecond superfluorescent fiber source(ns-SFS).The results reveal that th...In this work,we experimentally investigate the dependence of the stimulated Raman scattering(SRS)effect on the seed linewidth of a high-power nanosecond superfluorescent fiber source(ns-SFS).The results reveal that the SRS in the ns-SFS amplifier is significantly influenced by the full width at half maximum(FWHM)of the ns-SFS seed,and there is an optimal FWHM linewidth of 2 nm to achieve the lowest SRS in our case.The first-order SRS power ratio increases rapidly when the seed’s linewidth deviates from the optimal FWHM linewidth.By power scaling the ns-SFS seed with the optimal FWHM linewidth,a narrowband all-fiberized ns-SFS amplifier is achieved with a maximum average power of 602 W,pulse energy of 24.1 mJ and corresponding peak power of 422.5 kW.This is the highest average power and pulse energy achieved for all-fiberized ns-SFS amplifiers to the best of our knowledge.展开更多
The experimental investigation of mode distortion induced by stimulated Raman scattering(SRS)in a high-power fiber amplifier,which includes the evolutions of optical spectra,spatial beam profiles,and time-frequency ch...The experimental investigation of mode distortion induced by stimulated Raman scattering(SRS)in a high-power fiber amplifier,which includes the evolutions of optical spectra,spatial beam profiles,and time-frequency characteristics,has been carried out in detail.Temporal-frequency characteristics have been studied for the first time,to the best of our knowledge,by using a low-speed camera and high-speed photodiode traces,which revealed that temporal-frequency characteristics of SRS-induced mode distortion are different from traditional dynamic mode instability(MI).The experimental results show that the output beam profile remains stable before the mode distortion occurs and fluctuates obviously after the onset of SRS-induced MI but on a time scale of seconds,which is much lower than that of Yb-gain-induced MI featuring millisecond-level beam profile fluctuation.It also shows that the mode distortion became measurable in company with the onset of inter-mode four-wave mixing(IM-FWM)when the ratio of Raman light reaches 3%;further,the beam quality factor M2degrades gradually from 1.4 to 2.1 as the ratio of Raman light increases.The mode distortion is accompanied by an obvious temperature increase of the output passive fiber,which further confirms that the mode distortion originates from SRS.The cause of the mode distortion induced by SRS has been explained in the context of core-pumped SRS effect,and the investigation on the accompanying IM-FWM effect indicates that the main content of the SRSinduced high-order mode is the LP21 mode.展开更多
The recent development of stimulated Raman scattering(SRS) microscopy allows for highly sensitive biological imaging with molecular vibrational contrast, opening up a variety of applications including label-free imagi...The recent development of stimulated Raman scattering(SRS) microscopy allows for highly sensitive biological imaging with molecular vibrational contrast, opening up a variety of applications including label-free imaging,metabolic imaging, and super-multiplex imaging. This paper introduces the principle of SRS microscopy and the methods of multicolor SRS imaging and describes an overview of biomedical applications.展开更多
基金National Natural Science Foundation of China(Nos.61871353,62031005)。
文摘In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.
基金This work was supported in part by the National Key R&D Program of China under Grant No.2018YFC0910600the National Natural Science Foundation of China under Grant Nos.81871397,81627807,11727813,91859109+2 种基金the Shaanxi Science Fund for Distinguished Young Scholars under Grant No.2020JC-27the Shaanxi Young Top-notch Talent of"Special Support Program"the Best Funded Projects for the Scientific and Technological Activities for Excellent Overseas Researchers in Shaanxi Province(2017017)..
文摘Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional SRS microscopes,providing with high lateral and axial spatial resolution.Because of the tight focus of the Gaussian beam,such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues.The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent.Here,we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method.The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method.We model the scattering tissues containing chemicals,calculate the SRS signals stimulated by two Bessel beams,discuss the influence of the fractal model parameters on signal generation,and compare them with those generated by the Gaussian beams.The results show that,even though the modeling parameters have great influence on SRS signal generation,the Bessel beams-based SRS can generate signals in deeper scattering tissues.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304311 and 11475177
文摘Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multiple-pass cell configuration. The SRS with the multiple-pass cell configuration is found to be very efficient for reduction of threshold of the first Stokes (S1). Due to the coherent SRS (CSRS) process, the multiple-pass cell configuration is more effective for reduction of the threshold for the second Stokes (S2) SRS and for increasing the conversion efficiency of S2. This contributes to the relatively low conversion efficiency of S1 for the multiple-pass cell configuration. Multiple-pass cell SRS is also found to be very effective for improving the beam quality and the stability of S1.
基金This work was supported in part by the National Science Foundation of China(Grant Nos.11421064,11374209,11405107 and 11374210).
文摘Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating considerably in the linear stage.However,different components of the incoherent light can be coupled by the Langmuir waves,so that stimulated Raman backward scattering can develop.When the bandwidth of incoherent light is larger than the Langmuir wave frequency,forward SRS can be seeded between different components of the incoherent light.The incoherent light can only increase the time duration for nonlinear saturation but cannot diminish the saturation level obviously.
文摘The conversion efficiency of stimulated Raman scattering (SRS) in CH4 is studied by using a single longitudinal mode second-harmonic Nd:YAG laser (532 nm, linewidth 0.003 cm^-1, pulse-width (FWHM) 6.5 ns). Due to the heat release from vibrationally excited particles, SRS processes often suffer from the thermal defocusing effect (TDE). In view of 6.5 ns laser pulse width is much shorter than the vibrational relaxation time of CH4 molecules, TDE can only affect the SRS processes afterwards. In the cases of low laser repetition, TDE will be not serious, because it will be removed by the thermal diffusion in Raman medium before the next pulse arrives. At the laser repetition rate 2 Hz, CH4 pressure 1.1 MPa and pump laser energy 95 mJ, the quantum conversion efficiency of backward first-Stokes (BS1) has attained 73%. This represents the highest first-stokes conversion efficiency in CH4. Furthermore, due to the relaxation oscillation, the BS1 pulses are narrowed to about 1.2 ns. As a result, the BS1 peak power turns out to be 2.7 times that of the pump. Its beam quality is also much better and is only slightly affected by TDE. This reason is that BS1 represents a wave-front-reversed replica of the pump beam, which can compensate the thermal distortions in Raman amplify process. Under the same conditions, but pump laser repetition rate as 10 Hz, the conversion efficiency of BS1 goes down to 36% due to TDE. From this study, we expect that a well-behaved 630 nm Raman laser may be designed by using a closed CH4/He circulating-cooling system, which may have some important applications.
基金supported by the National Key Research and Development Program of China (No. 2016YFA0401100)the Strategic Priority Re-search Program of Chinese Academy of Sciences (No. XDA25050700)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042)National Natural Science Foundation of China (Nos. 11805062, 11675264, 11774430)
文摘Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA25050700)the National Natural Science Foundation of China(Grant Nos.11805062,11875091 and 11975059)+1 种基金the Science Challenge Project(Grant No.TZ2016005)the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5029)。
文摘Stimulated Raman scattering(SRS)is one of the main instabilities affecting success of fusion ignition.Here,we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations.The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated,which is consistent with our theoretical analysis quantitatively.Maxwellian distribution,flattened distribution,and bi-Maxwellian distribution are studied in detail,which represent three typical stages of SRS.We also demonstrate the effects of plateau width,hot-electron fraction,hot-to-cold electron temperature ratio,and collisional damping on the Landau damping and growth rate.They gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.
基金supported by National High Technology ICF Committee in Chinathe National Natural Science Fund of China(Nos.10675024,10335020,10375011 and 10576007)the Laboratory of Computational Physics(No.51479050205ZW0905)
文摘Stimulated Raman particle-in-cell (PIC) simulations scattering (SRS) in a low-density The backward stimulated Raman plasma slab is investigated by scattering (B-SRS) dominates initially and erodes the head of the pump wave, while the forward stimulated Raman scattering (F-SRS) subsequently develops and is located at the rear part of the slab. Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities. The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities. The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.
文摘When the film is excited by a very low excitation energy, thespontaneous Raman scattering emerges. The intensity of Ramanscattering is proportional to the Excitation power below thethreshold excitation. When the excited power reaches the Excitationthreshold, the intensity of Stokes light strongly increases.Meanwhile an anti- Stokes light at 495 nm and multiple order butsmall Stokes peaks occur. The intensity of Stokes light is muchlarger than that of anti-Stokes.
基金Supported by the National Natural Science Foundation of China under Grant No 11404404the Outstanding Youth Fund Project of Hunan Provincethe Fund of Innovation of National University of Defense Technology under Grant No B120701
文摘We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.
文摘Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.
基金Project supported by the National Natural Science Foundation of China (Gant No. 10974067)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104106)+1 种基金the Science and Technology Planning Project of Jilin Province, China (Gant Nos. 20101508 201101037 and 201115033)China Postdoctoral Science Foundation (Grant No. 20100481062)
文摘The competition between the stimulated resonance Raman scattering (SRRS) of Rhodamine B (RhB) and the stimulated Raman scattering (SRS) of ethanol (C2H50H) is observed at the RhB in C2H5OH solution. For different concentrations of the solution, the peak wavelengths of the SRRS, the amplified spontaneous emission (ASE), the fluorescence and the absorption of RhB are different. The SRRS of RhB and the SRS of C2H50H are simultaneously generated when the concentration of the solution is 10-5 mol/L and the energy of the excitation laser is 20.4 mJ. Otherwise, only either the SRRS of RhB or the SRS of C2H5OH is generated. The SRRS can be amplified by the ASE gain when the SRRS is near the peak of the ASE, and the peak wavelength of the SRRS coincides with the wavelength of the maximal intensity ASE.
基金supported by the Academic Research Fund(AcRF)-Tier 2(A-8000117-01-00)and Tier 1(R397-000334-114,R397-000-371-114,and R397-000-378-114)from the Ministry of Education(MOE)the Merlion Fund(WBS R-397-000-356-133)the National Medical Research Council(NMRC)(A-0009502-01-00 and A-8001143-00-00),Singapore
文摘Three-dimensional(3D)imaging is essential for understanding intricate biological and biomedical systems,yet live cell and tissue imaging applications still face challenges due to constrained imaging speed and strong scattering in turbid media.Here,we present a unique phase-modulated stimulated Raman scattering tomography(PM-SRST)technique to achieve rapid label-free 3D chemical imaging in cells and tissue.To accomplish PM-SRST,we utilize a spatial light modulator to electronically manipulate the focused Stokes beam along the needle Bessel pump beam for SRS tomography without the need for mechanical z scanning.We demonstrate the rapid 3D imaging capability of PM-SRST by real-time monitoring of 3D Brownian motion of polystyrene beads in water with 8.5 Hz volume rate,as well as the instant biochemical responses to acetic acid stimulants in MCF-7 cells.Further,combining the Bessel pump beam with a longer wavelength Stokes beam(NIR-II window)provides a superior scattering resilient ability in PM-SRST,enabling rapid tomography in deeper tissue areas.The PM-SRST technique providestwofold enhancement in imaging depth in highly scattering media(e.g.,polymer beads phantom and biotissue like porcine skin and brain tissue)compared with conventional point-scan SRS.We also demonstrate the rapid 3D imaging ability of PM-SRST by observing the dynamic diffusion and uptake processes of deuterium oxide molecules into plant roots.The rapid PM-SRST developed can be used to facilitate label-free 3D chemical imaging of metabolic activities and functional dynamic processes of drug delivery and therapeutics in live cells and tissue.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856,the University of Rochester and the New York State Energy Research and Development Authority。
文摘Transverse stimulated Raman scattering(TSRS)in potassium dihydrogen phosphate(KDP)and deuterated potassium dihydrogen phosphate(DKDP)plates for large-aperture,inertial confinement fusion(ICF)-class laser systems is a well-recognized limitation giving rise to parasitic energy conversion and laser-induced damage.The onset of TSRS is manifested in plates exposed to the ultraviolet section of the beam.TSRS amplification is a coherent process that grows exponentially and is distributed nonuniformly in the crystal and at the crystal surfaces.To understand the growth and spatial distribution of TSRS energy in various configurations,a modeling approach has been developed to simulate the operational conditions relevant to ICF-class laser systems.Specific aspects explored in this work include(i)the behavior of TSRS in large-aperture crystal plates suitable for third-harmonic generation and use as wave plates for polarization control in current-generation ICF-class laser system configurations;(ii)methods,and their limitations,of TSRS suppression and(iii)optimal geometries to guide future designs.
基金funded by the Russian Science Foundation(No.22-79-10068)。
文摘An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in a BaWO4 crystal in a highly transient regime of interaction.The effect takes place in the range of pump pulse energy from~0.1 to~0.5μJ with maximum energy conversion efficiency up to 35%at 0.2μJ.The nature of the observed effects is explained by interference of SRS and self-phase modulation,where the latter is related to a noninstantaneous orientational Kerr nonlinearity in the BaWO4 crystal.
基金supported by the Key Laboratory of Optical System Advanced Manufacturing Technology(Chinese Academy of Sciences)(2022KLOMT02-04)the Basic Research Program of Jiangsu Province(BK20201305).
文摘With the increasing power of fiber lasers,single chirped and tilted fiber Bragg gratings(CTFBGs)cannot completely mitigate continuously enhanced system-excited stimulated Raman scattering(SRS).Although improving the loss rate of a single CTFBG or cascading multiple CTFBGs can provide better suppression of the stronger SRS,excessive insertion loss may cause significant attenuation of the output power.Confronting the challenge,we firstly present an SRS mitigation method based on a dual-structure fiber grating in this paper.The dual-structure fiber grating comprises a CTFBG and a fiber Bragg grating structure,which were designed and fabricated on a passive 25/400 double-clad fiber.To evaluate the performance of the grating,a 3 kW fiber master oscillator power amplifier laser is established.The experimental results demonstrate that the SRS mitigation rate of the grating is greater than 30 dB(99.9%),whereas the insertion loss is only approximately 3%,thus allowing for minimal deterioration of the output power.This solves the contradiction between high suppression rate and high insertion loss faced by CTFBGs,which in turn makes dualstructure fiber gratings particularly suitable for mitigating SRS in 3-5 kW high-power fiber lasers.
基金financially supported by the CAS Project for Young Scientists in Basic Research(No.YSBR-065)the National Natural Science Foundation of China(Nos.62225507,62175230,and U2033211)+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20200001)the National Key R&D Program of China(No.2022YFB3607800).
文摘In this work,we experimentally investigate the dependence of the stimulated Raman scattering(SRS)effect on the seed linewidth of a high-power nanosecond superfluorescent fiber source(ns-SFS).The results reveal that the SRS in the ns-SFS amplifier is significantly influenced by the full width at half maximum(FWHM)of the ns-SFS seed,and there is an optimal FWHM linewidth of 2 nm to achieve the lowest SRS in our case.The first-order SRS power ratio increases rapidly when the seed’s linewidth deviates from the optimal FWHM linewidth.By power scaling the ns-SFS seed with the optimal FWHM linewidth,a narrowband all-fiberized ns-SFS amplifier is achieved with a maximum average power of 602 W,pulse energy of 24.1 mJ and corresponding peak power of 422.5 kW.This is the highest average power and pulse energy achieved for all-fiberized ns-SFS amplifiers to the best of our knowledge.
基金National Natural Science Foundation of China(61905226)National Key Research and Development Program of China(2017YFB1104401)。
文摘The experimental investigation of mode distortion induced by stimulated Raman scattering(SRS)in a high-power fiber amplifier,which includes the evolutions of optical spectra,spatial beam profiles,and time-frequency characteristics,has been carried out in detail.Temporal-frequency characteristics have been studied for the first time,to the best of our knowledge,by using a low-speed camera and high-speed photodiode traces,which revealed that temporal-frequency characteristics of SRS-induced mode distortion are different from traditional dynamic mode instability(MI).The experimental results show that the output beam profile remains stable before the mode distortion occurs and fluctuates obviously after the onset of SRS-induced MI but on a time scale of seconds,which is much lower than that of Yb-gain-induced MI featuring millisecond-level beam profile fluctuation.It also shows that the mode distortion became measurable in company with the onset of inter-mode four-wave mixing(IM-FWM)when the ratio of Raman light reaches 3%;further,the beam quality factor M2degrades gradually from 1.4 to 2.1 as the ratio of Raman light increases.The mode distortion is accompanied by an obvious temperature increase of the output passive fiber,which further confirms that the mode distortion originates from SRS.The cause of the mode distortion induced by SRS has been explained in the context of core-pumped SRS effect,and the investigation on the accompanying IM-FWM effect indicates that the main content of the SRSinduced high-order mode is the LP21 mode.
基金by JST CREST (No. JPMJCR1872)JSPS KAKENHI (Nos.JP20H02650 and JP18K18847)+2 种基金Im PACT Program of the Council for ScienceTechnology and Innovation (Cabinet Office, Government of Japan)Quantum Leap Flagship Program of MEXT (No. JPMXS0118067246)
文摘The recent development of stimulated Raman scattering(SRS) microscopy allows for highly sensitive biological imaging with molecular vibrational contrast, opening up a variety of applications including label-free imaging,metabolic imaging, and super-multiplex imaging. This paper introduces the principle of SRS microscopy and the methods of multicolor SRS imaging and describes an overview of biomedical applications.