In this paper, we propose an ordinal optimization based simulation optimization algorithm to determine a target distribution of bicycles for a bicycle sharing network to minimize an expected cost. The proposed algorit...In this paper, we propose an ordinal optimization based simulation optimization algorithm to determine a target distribution of bicycles for a bicycle sharing network to minimize an expected cost. The proposed algorithm consists of two stages. The first stage is using GA (genetic algorithm) assisted by a surrogate model to select an estimated good enough subset of solutions. The second stage is to identify the best solution among the solutions obtained from stage one using optimal computing budget allocation technique. We have tested the proposed algorithm on a bicycle sharing network and compared the test results with those obtained by the GA with exact model. The test results demonstrate that the proposed algorithm can obtain a good enough solution within reasonable computing time and outperforms the comparing method.展开更多
文摘In this paper, we propose an ordinal optimization based simulation optimization algorithm to determine a target distribution of bicycles for a bicycle sharing network to minimize an expected cost. The proposed algorithm consists of two stages. The first stage is using GA (genetic algorithm) assisted by a surrogate model to select an estimated good enough subset of solutions. The second stage is to identify the best solution among the solutions obtained from stage one using optimal computing budget allocation technique. We have tested the proposed algorithm on a bicycle sharing network and compared the test results with those obtained by the GA with exact model. The test results demonstrate that the proposed algorithm can obtain a good enough solution within reasonable computing time and outperforms the comparing method.