In this work,a monorail vehicle-bridge coupling(VBC)model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system,to study the VBC vibration of...In this work,a monorail vehicle-bridge coupling(VBC)model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system,to study the VBC vibration of straddlemonorail curved girder bridge and the relevant factors influencing VBC.While taking Chongqing Jiao Xin line as an example,the VBC program is compiled using Fortran,where the reliability of algorithm and program is verified by the results of Chongqing monorail test.Moreover,the effects of curve radius,vehicle speed,and track irregularity on the corresponding vehicle and bridge vibrations are compared and analyzed.It is observed that the test results of lateral vibration acceleration(LVA)and vertical vibration acceleration(VVA)of track beam,and LVA of vehicle,are consistent with the simulation results.Owing to the track irregularity,vibration of track beam and vehicle increases significantly.Besides,an increase in vehicle speed gradually increases the vibration of track beam and vehicle.For the curve radius(R)≤200 m,lateral and vertical vibrations of the track beam and vehicle decrease significantly with an increasing curve radius.Alternatively,when 200 m<R<600 m,the lateral vibration of the track beamand vehicle decreases slowly with an increasing curve radius,while the relevant vertical vibration remains stable.Similarly,when R≥600 m,the lateral and vertical vibrations of the track beam and vehicle tend to be stable.Accordingly,the results presented here can provide a strong reference for the design,construction,and safety assessment of existing bridges.展开更多
基金The authors gratefully acknowledge the partial support of this research by the Tianjin Natural Science Foundation(Nos.18JCQNJC08300,18JCYBJC90800)the National Natural Science Foundation of China(No.52108333)+4 种基金Tianjin Transportation Science and Technology Development Plan(2021-20)the Key Laboratory of Road Structure and Materials Transportation Industry(No.310821171114)the Innovation Capability Support Plan of Shaanxi Province(No.2019KJXX-036)the Scientific Research Project of Tianjin Education Commission(No.2020KJ038)the Department of Science and Technology of Shaanxi Province Focuses on Research and Development of General Project Industrial Field(No.2020GY318).
文摘In this work,a monorail vehicle-bridge coupling(VBC)model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system,to study the VBC vibration of straddlemonorail curved girder bridge and the relevant factors influencing VBC.While taking Chongqing Jiao Xin line as an example,the VBC program is compiled using Fortran,where the reliability of algorithm and program is verified by the results of Chongqing monorail test.Moreover,the effects of curve radius,vehicle speed,and track irregularity on the corresponding vehicle and bridge vibrations are compared and analyzed.It is observed that the test results of lateral vibration acceleration(LVA)and vertical vibration acceleration(VVA)of track beam,and LVA of vehicle,are consistent with the simulation results.Owing to the track irregularity,vibration of track beam and vehicle increases significantly.Besides,an increase in vehicle speed gradually increases the vibration of track beam and vehicle.For the curve radius(R)≤200 m,lateral and vertical vibrations of the track beam and vehicle decrease significantly with an increasing curve radius.Alternatively,when 200 m<R<600 m,the lateral vibration of the track beamand vehicle decreases slowly with an increasing curve radius,while the relevant vertical vibration remains stable.Similarly,when R≥600 m,the lateral and vertical vibrations of the track beam and vehicle tend to be stable.Accordingly,the results presented here can provide a strong reference for the design,construction,and safety assessment of existing bridges.