期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hot deformation behavior and constitutive relationship of Q420qE steel 被引量:2
1
作者 禹宝军 关小军 +3 位作者 王丽君 赵健 刘千千 曹宇 《Journal of Central South University》 SCIE EI CAS 2011年第1期36-41,共6页
Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests we... Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests were employed to establish the constitutive equation, in which the influence of strain was incorporated by considering the effect of strain on material constants Q, n, a, and lnA. The results show that the flow stress curves are dependent on the strain, strain rate and deformation temperature. They display typical dynamic recrystallization behavior and consist of three stages, i.e., hardening stage, softening stage and steady stage. The flow stress decreases with increasing the deformation temperature and decreasing the strain rate. In addition, the flow stress data predicted by the proposed constitutive model agree well with the corresponding experimental results, and the correlation coefficient and the average absolute relative error between them are 0.990 3 and 3.686%, respectively. 展开更多
关键词 Q420qE bridge steel hot compression flow stress strain dependent constitutive equation
下载PDF
On the new exact traveling wave solutions of the time-space fractional strain wave equation in microstructured solids via the variational method
2
作者 Kang-Jia Wang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第4期1-8,共8页
In this paper,we mainly study the time-space fractional strain wave equation in microstructured solids.He’s variational method,combined with the two-scale transform are implemented to seek the solitary and periodic w... In this paper,we mainly study the time-space fractional strain wave equation in microstructured solids.He’s variational method,combined with the two-scale transform are implemented to seek the solitary and periodic wave solutions of the time-space strain wave equation.The main advantage of the variational method is that it can reduce the order of the differential equation,thus simplifying the equation,making the solving process more intuitive and avoiding the tedious solving process.Finally,the numerical results are shown in the form of 3D and 2D graphs to prove the applicability and effectiveness of the method.The obtained results in this work are expected to shed a bright light on the study of fractional nonlinear partial differential equations in physics. 展开更多
关键词 solitary wave solutions periodic wave solutions fractional strain wave equation variational principle He’s variational method
原文传递
Dispersive Solitary Wave Solutions of Strain Wave Dynamical Model and Its Stability
3
作者 Muhammad Arshad Aly R.Seadawy +1 位作者 Dian-Chen Lu Asghar Ali 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第10期1155-1162,共8页
In the materials of micro-structured, the propagation of wave modeling should take into account the scale of various microstructures. The different kinds solitary wave solutions of strain wave dynamical model are deri... In the materials of micro-structured, the propagation of wave modeling should take into account the scale of various microstructures. The different kinds solitary wave solutions of strain wave dynamical model are derived via utilizing exp(-φ(ξ))-expansion and extended simple equation methods. This dynamical equation plays a key role in engineering and mathematical physics. Solutions obtained in this work include periodic solitary waves, Kink and antiKink solitary waves, bell-shaped solutions, solitons, and rational solutions. These exact solutions help researchers for knowing the physical phenomena of this wave equation. The stability of this dynamical model is examined via standard linear stability analysis, which authenticate that the model is stable and their solutions are exact. Graphs are depicted for knowing the movements of some solutions. The results show that the current methods, by the assist of symbolic calculation, give an effectual and direct mathematical tools for resolving the nonlinear problems in applied sciences. 展开更多
关键词 exp(-∅(ξ))-expansion method improved simple equation method strain wave equation solitary waves periodic solutions
原文传递
Hot Deformation Behavior and Flow Stress Prediction of Ultra Purified 17% Cr Ferritic Stainless Steel Stabilized with Nb and Ti 被引量:4
4
作者 Fei GAO Fu-xiao YU +1 位作者 Hai-tao LIU Zhen-yu LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第9期827-836,共10页
The hot deformation behavior of ultra purified 17% Cr ferritic stainless steel stabilized with Nb and Ti was investigated using axisymmetric hot compression tests on a thermomechanical simulator.The deformation was ca... The hot deformation behavior of ultra purified 17% Cr ferritic stainless steel stabilized with Nb and Ti was investigated using axisymmetric hot compression tests on a thermomechanical simulator.The deformation was carried out at the temperatures ranging from 700 to 1 100℃ and strain rates from 1to 10s-1.The microstructure was investigated using electron backscattering diffraction.The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent type equation.The effect of strain was incorporated in the constitutive equation by establishing polynomial relationship between the material constants and strain.A sixth order polynomial was suitable to represent the effect of strain.The modified constitutive equation considering the effect of strain was developed and could predict the flow stress throughout the deformation conditions except at800℃in 1s-1 and at 700℃in 5and 10s-1.Losing the reliability of the modified constitutive equation was possibly ascribed to the increase in average Taylor factor at 800℃in 1s-1 and the increase in temperature at 700℃in 5and10s-1 during hot deformation.The optimum window for improving product quality of the ferritic stainless steels was identified as hot rolling at a low finisher entry temperature of 700℃,which can be achieved in practical production. 展开更多
关键词 17%Cr ferritic stainless steel hot deformation flow stress constitutive equation strain compensation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部