期刊文献+
共找到18,686篇文章
< 1 2 250 >
每页显示 20 50 100
Present-day Upper-crustal Strain Rate Field in Southeastern Tibet and its Geodynamic Implications:Constraints from GPS Measurements with ABIC Method 被引量:1
1
作者 YANG Shaohua PAN Jiawei +1 位作者 LI Haibing SHI Yaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期265-275,共11页
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne... The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust. 展开更多
关键词 strain rate differential escape aBIC GPS southeastern Tibet
下载PDF
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
2
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 strain rate strain hardening Nano rubber EPOXY adiabatic shearing localization
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
3
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 Dynamic behaviors True triaxial compression High strain rates Dynamic failure mechanism PFC3D-FLaC3D coupled method
下载PDF
Spalling characteristics of high-temperature treated granitic rock at different strain rates
4
作者 L.F.Fan Q.H.Yang X.L.Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1280-1288,共9页
The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen... The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate. 展开更多
关键词 Dynamic spalling characteristics High temperature strain rate Dynamic loading GRaNITE
下载PDF
Extension of Flow Behaviour and Damage Models for Cast Iron Alloys with Strain Rate Effect
5
作者 Chuang Liu Dongzhi Sun +2 位作者 Xianfeng Zhang Florence Andrieux Tobias Gersterc 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期297-310,共14页
Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry.To study the mechanical behavior of a typical ductile cast iron(GJS-450)with nodular graphite,u... Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry.To study the mechanical behavior of a typical ductile cast iron(GJS-450)with nodular graphite,uni-axial quasi-static and dynamic tensile tests at strain rates of 10^(-4),1,10,100,and 250 s^(-1)were carried out.In order to investigate the influence of stress state on the deformation and fracture parameters,specimens with various geometries were used in the experiments.Stress strain curves and fracture strains of the GJS-450 alloy in the strain rate range of 10^(-4)to 250 s^(-1)were obtained.A strain rate-dependent plastic flow model was proposed to describe the mechanical behavior in the corresponding strain-rate range.The available damage model was extended to take the strain rate into account and calibrated based on the analysis of local fracture strains.Simulations with the proposed plastic flow model and the damage model were conducted to observe the deformation and fracture process.The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys.The predictions with the proposed plastic flow and damage models at various strain rates agree well with the experimental results,which illustrates that the rate-dependent plastic flow and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.The proposed plastic flow and damage models can be used to describe the deformation and fracture analysis of materials with similar properties. 展开更多
关键词 Dynamic behavior of materials strain rate dependency Damage model Voce model Cast iron
下载PDF
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects
6
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
下载PDF
Monte Carlo method for evaluation of surface emission rate measurement uncertainty
7
作者 Yuan-Qiao Li Min Lin +4 位作者 Li-Jun Xu Rui Luo Yu-He Zhang Qian-Xi Ni Yun-Tao Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期126-136,共11页
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co... The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results. 展开更多
关键词 Surface emission rate Monte Carlo method METROLOGY Probability distribution function Dead time Low-energy loss correction Least-squares method
下载PDF
High strain rate superplasticity of TiN_p/1N90Al composite prepared by powder metallurgy method
8
作者 甄良 胡会娥 +2 位作者 王海 T.Imai 雷廷权 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期222-226,共5页
TiN_p/1N90Al composite was fabricated by powder metallurgy method with a reinforcement volume fraction of 15%. The tensile experiment, DSC and SEM were used to study the high strain rate superplasticity of the TiN_p/1... TiN_p/1N90Al composite was fabricated by powder metallurgy method with a reinforcement volume fraction of 15%. The tensile experiment, DSC and SEM were used to study the high strain rate superplasticity of the TiN_p/1N90Al composite. The DSC result shows that the incipient melting temperature of the TiN_p/1N90Al composite is 906K. The tensile tests were carried out over a range of deformation temperature from 918 to 928K and strain rate from 1.7 to 1.7×10 -3 s -1. The maximum elongation of 201% is realized at 923K with a strain rate of 1.7×10 -1 s -1. Otherwise all the elongations are higher than 100% in the strain rate range of 3.3×10 -2-6.7×10 -1 s -1 at the three deformation temperatures. The curves of m value of the TiN_p/1N90Al composite can be divided into two stages with the variation of strain rate at different deformation temperatures and the critical strain rate of 10 -1 s -1. When the strain rate is higher than 10 -1 s -1, the m values of the three curves are smaller than 0.3, but the m values of the three curves are about 0.37 when the strain rate is higher than 10 -1 s -1. 展开更多
关键词 high strain rate SUPERPLaSTICITY metal matrix COMPOSITE HOT ROLLING deformation microstructure
下载PDF
Strain Rate Effects on Tensile Properties of HDPE-PP Composite Prepared by Extrusion and Injection Moulding Method
9
作者 Harekrushna Sutar Himanshu Sekhar Maharana +2 位作者 Chiranjit Dutta Rabiranjan Murmu Sangram Patra 《Materials Sciences and Applications》 2019年第3期205-215,共11页
The present paper investigates the effect of strain rate on different tensile properties of high density polyethylene (HDPE) and polypropylene (PP) composite. Tensile specimens of virgin HDPE-PP composites are prepare... The present paper investigates the effect of strain rate on different tensile properties of high density polyethylene (HDPE) and polypropylene (PP) composite. Tensile specimens of virgin HDPE-PP composites are prepared via twin screw extruder and injection moulding methods as per ASTM D638-02a (Type-I);with gage length 50 mm, width 13 mm and thickness 3 mm. Composites are fabricated with PP as reinforcing agent at a loading rate of 10%, 20%, 30%, 40% and 50% by weight. Experiments are carried out at room temperature of 23&deg;C and absolute humidity of 54% at a cross head speed of 30, 40, 50, 60 and 70 mm/min. Stress and strain values at yield and break points are reported. Atomic force microscopy (AFM) is used to study the distribution of polymer molecules in the mixture and surface roughness. As in last, experiments are designed by Taguchi optimization method to find out the dominating factors on tensile strength. 展开更多
关键词 HDPE-PP BLEND strain rate TENSILE Strength aFM DOE
下载PDF
Strength characteristics of dry and saturated rock at different strain rates 被引量:29
10
作者 周子龙 蔡鑫 +3 位作者 赵源 陈璐 熊成 李夕兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1919-1925,共7页
The strength of rock materials is largely affected by water and loading conditions, but there are few studies on mechanical properties of saturated rocks at high strain rates. Through compressive tests on dry and satu... The strength of rock materials is largely affected by water and loading conditions, but there are few studies on mechanical properties of saturated rocks at high strain rates. Through compressive tests on dry and saturated sandstone specimens, it was found that the dynamic compressive strength of both dry and saturated sandstone specimens increased with the increase of strain rates. The saturated rock specimens showed stronger rate dependence than the dry ones. The water affecting factor (WAF), as the ratio of the strength under dry state to that under saturated state, was introduced to describe the influence of water on the compressive strength at different strain rates. The WAF under static load was close to 1.38, and decreased with the increase of strain rate. When the strain rate reached 190 s^-1, the WAF reduced to 0.98. It indicates that the compressive strength of saturated specimens can be higher than that of dry ones when the strain rate is high enough. Furthermore, the dual effects of water and strain rate on the strength of rock were discussed based on sliding crack model, which provided a good explanation for the experimental results. 展开更多
关键词 ROCK STRENGTH strain rate saturated rock
下载PDF
Advanced test methods of material property characterization:high strain-rate testing and experimental simulation of multiaxial stress states
11
作者 Reinhard BARDENHEIER 《Baosteel Technical Research》 CAS 2010年第S1期122-,共1页
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u... Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions. 展开更多
关键词 economic design numeric modelling simulation high strain-rate testing strain- rate sensitivity CRaSHWORTHINESS multiaxial stress state material constraint equivalent stress state
下载PDF
Influence of strain rate on microstructure and formability of AZ31B magnesium alloy sheets 被引量:10
12
作者 王利飞 黄光胜 +1 位作者 李红成 张华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期916-922,共7页
The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^... The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10^-4, 10^-3, 10^-2, 10^-1 s^-1 at 200℃. The results show that the volume fraction of dynamic recrystallization grains increases and the original grains are gradually replaced by recrystallization grains with the strain rate decreasing. A larger elongation and a smaller r-value are obtained at a lower strain rate, moreover the erichsen values become larger with the strain rate reducing, so the formability improves. This problem arises in part from the enhanced softening and the coordination of recrystallization grains during deformation. 展开更多
关键词 aZ31B magnesium alloy strain rate dynamic recrystallization FORMaBILITY
下载PDF
Flow behavior and microstructure of ZK60 magnesium alloy compressed at high strain rate 被引量:5
13
作者 吴远志 严红革 +3 位作者 朱素琴 陈吉华 刘安民 刘先兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期930-938,共9页
Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dyna... Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain. 展开更多
关键词 ZK60 magnesium alloy high strain rate compression flow behavior MICROSTRUCTURE twin induced DRX
下载PDF
Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires 被引量:3
14
作者 王卫东 易成龙 樊康旗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3353-3361,共9页
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature... Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed. 展开更多
关键词 ultrathin nickel nanowires temperature dependence strain rate dependence tensile properties molecular dynamics simulation
下载PDF
HIGH STRAIN RATE SU PERPLASTICITY IN SiCp REINFORCED AZ31 MAGNESIUM MATRIX COMPOSITE 被引量:2
15
作者 陈培生 吕庆风 +2 位作者 孙扬善 蒋建清 马爱斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期17-21,共5页
Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup&g... Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity. 展开更多
关键词 magnesium alloys SiC p articulate composite high strain rate and superplasticity
下载PDF
Uniaxial compressive behavior of equal channel angular pressing Al at wide temperature and strain rate range 被引量:1
16
作者 汤忠斌 索涛 +3 位作者 张部声 李玉龙 赵峰 范学领 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2447-2452,共6页
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,... Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates. 展开更多
关键词 ultrafine-grained materials equal channel angular pressing aL mechanical behavior strain rate sensitivity temperature dependence activation volume
下载PDF
Strain rate-dependent high temperature compressive deformation characteristics of ultrafine-grained pure aluminum produced by ECAP 被引量:1
17
作者 颜莹 齐跃 +1 位作者 陈立佳 李小武 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期966-973,共8页
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif... To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures. 展开更多
关键词 equal channel angular pressing(ECaP) pure al strain rate high temperature compression DEFORMaTION damage microstructure
下载PDF
“Abnormal transient creep” in fine-grained Al-5356 alloy observed at low strain rates by high-resolution strain measurement 被引量:1
18
作者 申俊杰 Kenichi IKEDA +1 位作者 Satoshi HATA Hideharu NAKASHIMA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1209-1214,共6页
Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavio... Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests. 展开更多
关键词 al-5356 alloy transient creep phase change low strain rate
下载PDF
Calculation of Valence Subband Structures for Strained Quantum-Wells by Plane Wave Expansion Method Within 6×6 Luttinger-Kohn Model
19
作者 国伟华 黄永箴 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第6期577-581,共5页
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of pla... The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range. 展开更多
关键词 semiconductor optical amplifier strained quantum well plane wave expansion method POLaRIZaTION
下载PDF
Topology Optimal Design of Material Microstructures Using Strain Energy-based Method 被引量:24
20
作者 Zhang Weihong Wang Fengwen Dai Gaoming Sun Shiping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期320-326,共7页
Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing e... Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials. 展开更多
关键词 strain energy-based method homogenization method microstructure design topology optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部