Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated...Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.展开更多
Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally us...Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.展开更多
推导了捷联惯导系统(S IN S)误差方程和航位推算(DR)误差方程。建立了S IN S/DR组合导航离散卡尔曼滤波(KF)状态方程和量测方程。最后对S IN S/DR组合导航算法进行了仿真,仿真结果表明:组合系统中部分误差源能够被估计出来并且得到补偿...推导了捷联惯导系统(S IN S)误差方程和航位推算(DR)误差方程。建立了S IN S/DR组合导航离散卡尔曼滤波(KF)状态方程和量测方程。最后对S IN S/DR组合导航算法进行了仿真,仿真结果表明:组合系统中部分误差源能够被估计出来并且得到补偿,因而组合导航效果优于单独的S IN S或DR导航效果。展开更多
基金supported by the National Natural Science Foundation of China(61722301)
文摘Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.
基金supported by the National Natural Science Foundation of China (6083400560775001)
文摘Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.
文摘推导了捷联惯导系统(S IN S)误差方程和航位推算(DR)误差方程。建立了S IN S/DR组合导航离散卡尔曼滤波(KF)状态方程和量测方程。最后对S IN S/DR组合导航算法进行了仿真,仿真结果表明:组合系统中部分误差源能够被估计出来并且得到补偿,因而组合导航效果优于单独的S IN S或DR导航效果。