Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the pr...Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.展开更多
Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of Ti...Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of TiO2 photocatalyst. Decolouration efficiency of the representative azo dye (acid orange 7, AOT) was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis. The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system, compared to that in the sole pulsed streamer discharge plasma system, due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge. The synergistic system of pulsed streamer discharge and TiO2 photocatalyst was found to have more reactive radicals for degradation of organic compounds in water.展开更多
Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,ta...Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.展开更多
Propylene carbonate (PC) has a great potential to be used as an energy storage medium in the compact pulsed power sources due to its high dielectric constant and large resistivity. We investigate both the positive a...Propylene carbonate (PC) has a great potential to be used as an energy storage medium in the compact pulsed power sources due to its high dielectric constant and large resistivity. We investigate both the positive and negative breakdown characteristics of PC. The streamer patterns are obtained by ultra-high-speed cameras. The experimental results show that the positive breakdown voltage of PC is about 135% higher than the negative one, which is abnormal compared with the common liquid. The shape of the positive streamer is filamentary and branchy, while the negative streamer is tree-like and less branched. According to these experimental results, a charge layer structure model at the interface between the metal electrode and liquid is presented. It is suggested that the abnormal polarity effect basically arises from the electric field strength difference in the interface between both electrodes and PC. What is more, the recombination radiation and photoionization also play an important role in the whole discharge process.展开更多
Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap swit...Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.展开更多
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of lon...The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.展开更多
The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential futu...The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.展开更多
Assumed having axial symmetry,the streamer discharge is often described by a fluid model in cylindrical coordinate system,which consists of convection dominated(diffusion)equations with source terms,coupled with a Poi...Assumed having axial symmetry,the streamer discharge is often described by a fluid model in cylindrical coordinate system,which consists of convection dominated(diffusion)equations with source terms,coupled with a Poisson’s equation.Without additional care for a stricter CFL condition or special treatment to the negative source term,popular methods used in streamer discharge simulations,e.g.,FEMFCT,FVM,cannot ensure the positivity of the particle densities for the cases in attaching gases.By introducing the positivity-preserving limiter proposed by Zhang and Shu[15]and Strang operator splitting,this paper proposes a finite difference scheme with a provable positivity-preserving property in cylindrical coordinate system,for the numerical simulation of streamer discharges in non-attaching and attaching gases.Numerical examples in non-attaching gas(N_(2))and attaching gas(SF_(6))are given to illustrate the effectiveness of the scheme.展开更多
The effects of gas compositions and reaction conditions on NO conversion by positive streamer discharge were experimentally investigated by using a link tooth wheel-cylinder reactor.The results showed that NO conversi...The effects of gas compositions and reaction conditions on NO conversion by positive streamer discharge were experimentally investigated by using a link tooth wheel-cylinder reactor.The results showed that NO conversion increased with increasing O_(2) concentration and NH3 concen-tration,but decreased with increasing inlet NO concentration and gas flow rate.The addition of CO_(2) or H_(2)O to the feed gas promoted NO conversion by increasing the maximum discharge voltage,and NH4NO3 was formed in the presence of NH_(3).There was a most suitable range interval between discharge tooth wheels if both NO conversion and energy consumption were considered.Increasing applied voltage resulted in the increase in the amount of O_(3) generated by streamer discharge.展开更多
It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of th...It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.展开更多
Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric p...Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.展开更多
Diagnosis of the particle number density of plasma plays an important role in the understanding of plasma sources and processing.Regular radiation signals from plasma oscillation in filaments of atmospheric nitrogen d...Diagnosis of the particle number density of plasma plays an important role in the understanding of plasma sources and processing.Regular radiation signals from plasma oscillation in filaments of atmospheric nitrogen discharge,which were excited by the injection of secondary electron beams during the propagation of the streamer,are employed to determine the ion density of plasma and its evolution in the filaments.Results show that the density of N4+ in a filament of atmospheric nitrogen discharge is of the order of 1013 cm-3.It is also found that the recombination processes play a dominant role in plasma decay,and that the ion density decreases non-monotonically with time during streamer propagation.展开更多
In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced...In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information.展开更多
In this work,a single Al_(2)O_(3) particle packed dielectric barrier discharge(DBD)reactor with adjustable discharge gap is built,and the influences of the particle shape(ball and column)and the residual gap between t...In this work,a single Al_(2)O_(3) particle packed dielectric barrier discharge(DBD)reactor with adjustable discharge gap is built,and the influences of the particle shape(ball and column)and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied.Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor.The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge.The length of streamer discharge is proportional to the size of the residual gap,but the number of discharge times of a single voltage cycle shows an opposite trend.Compared to the column,a smooth spherical surface is more conducive to the formation of large and uniform surface discharges.The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball.All in all,the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.展开更多
Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure a...Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air.To initiate ionization waves in a quartz tube,an electrodeless pulse-periodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed.In this case ionization waves(streamers)have a length of tens of centimeters.The main plasma parameters were measured at various distances along the tube.The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge,just as it happens during the formation of red sprites.展开更多
基金Project supported by the Funds for Innovative Research Groups of China (Grant No. 51021005)the National Basic Research Program of China (Grant No. 2009CB724504)the National Natural Science Foundation of China (Grant No. 50707036)
文摘Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures.
基金supported by the National Natural Science Foundation Committee of China(No.20377006)Foundation of Education Ministry of China(No.2005141002)
文摘Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of TiO2 photocatalyst. Decolouration efficiency of the representative azo dye (acid orange 7, AOT) was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis. The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system, compared to that in the sole pulsed streamer discharge plasma system, due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge. The synergistic system of pulsed streamer discharge and TiO2 photocatalyst was found to have more reactive radicals for degradation of organic compounds in water.
基金supported in part by China Postdoctoral Science Foundation(No.2022MD723833)Natural Science Basic Research Program of Shaanxi Province(No.2023-JCYB-349)Young Elite Scientists Sponsorship Program by CSEE(No.JLB-2022-91)。
文摘Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.
基金Supported by the National Natural Science Foundation of China under Grant No 51677190the Hunan Provincial Natural Science Foundation of China under Grant No 2017JJ1005
文摘Propylene carbonate (PC) has a great potential to be used as an energy storage medium in the compact pulsed power sources due to its high dielectric constant and large resistivity. We investigate both the positive and negative breakdown characteristics of PC. The streamer patterns are obtained by ultra-high-speed cameras. The experimental results show that the positive breakdown voltage of PC is about 135% higher than the negative one, which is abnormal compared with the common liquid. The shape of the positive streamer is filamentary and branchy, while the negative streamer is tree-like and less branched. According to these experimental results, a charge layer structure model at the interface between the metal electrode and liquid is presented. It is suggested that the abnormal polarity effect basically arises from the electric field strength difference in the interface between both electrodes and PC. What is more, the recombination radiation and photoionization also play an important role in the whole discharge process.
基金National Natural Science Foundation of China(No.50477027)
文摘Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.
基金supported by National Natural Science Foundation of China (Grant No.51277063)
文摘The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.
文摘The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.
基金supported by National Basic Research Program of China(973 program)under grant 2011CB209403National Natural Science Foundation of China under grant 51207078China Postdoctoral Science Foundation under grant 2012M520274.
文摘Assumed having axial symmetry,the streamer discharge is often described by a fluid model in cylindrical coordinate system,which consists of convection dominated(diffusion)equations with source terms,coupled with a Poisson’s equation.Without additional care for a stricter CFL condition or special treatment to the negative source term,popular methods used in streamer discharge simulations,e.g.,FEMFCT,FVM,cannot ensure the positivity of the particle densities for the cases in attaching gases.By introducing the positivity-preserving limiter proposed by Zhang and Shu[15]and Strang operator splitting,this paper proposes a finite difference scheme with a provable positivity-preserving property in cylindrical coordinate system,for the numerical simulation of streamer discharges in non-attaching and attaching gases.Numerical examples in non-attaching gas(N_(2))and attaching gas(SF_(6))are given to illustrate the effectiveness of the scheme.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20677004).
文摘The effects of gas compositions and reaction conditions on NO conversion by positive streamer discharge were experimentally investigated by using a link tooth wheel-cylinder reactor.The results showed that NO conversion increased with increasing O_(2) concentration and NH3 concen-tration,but decreased with increasing inlet NO concentration and gas flow rate.The addition of CO_(2) or H_(2)O to the feed gas promoted NO conversion by increasing the maximum discharge voltage,and NH4NO3 was formed in the presence of NH_(3).There was a most suitable range interval between discharge tooth wheels if both NO conversion and energy consumption were considered.Increasing applied voltage resulted in the increase in the amount of O_(3) generated by streamer discharge.
文摘It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.
基金supported by National Natural Science Foundation of China(No.51077032)
文摘Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.
基金supported by the Technological Project of Shenzhen,China(No.JC201005280485A)the Planned S&T Program of Shenzhen,China(No.JC201105170703A)the Foundation of Guangdong Province,China(No.2012LYM0115)
文摘Diagnosis of the particle number density of plasma plays an important role in the understanding of plasma sources and processing.Regular radiation signals from plasma oscillation in filaments of atmospheric nitrogen discharge,which were excited by the injection of secondary electron beams during the propagation of the streamer,are employed to determine the ion density of plasma and its evolution in the filaments.Results show that the density of N4+ in a filament of atmospheric nitrogen discharge is of the order of 1013 cm-3.It is also found that the recombination processes play a dominant role in plasma decay,and that the ion density decreases non-monotonically with time during streamer propagation.
基金the National Natural Science Foundation of China(Nos.50077015,50477027)
文摘In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information.
基金the National Key R&D Program of China(No.2021YFF0603100)the Natural Science Foundation of Jiangsu Province(No.BK20200452)+1 种基金the Postdoctoral Research Foundation of China(No.2020M681584)National Natural Science Foundation of China(No.51977110)。
文摘In this work,a single Al_(2)O_(3) particle packed dielectric barrier discharge(DBD)reactor with adjustable discharge gap is built,and the influences of the particle shape(ball and column)and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied.Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor.The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge.The length of streamer discharge is proportional to the size of the residual gap,but the number of discharge times of a single voltage cycle shows an opposite trend.Compared to the column,a smooth spherical surface is more conducive to the formation of large and uniform surface discharges.The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball.All in all,the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.
基金funded by the Ministry of Science and Higher Education of the Russian Federation within Agreement no.075-15-2021-1026 of November 15,2021.
文摘Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air.To initiate ionization waves in a quartz tube,an electrodeless pulse-periodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed.In this case ionization waves(streamers)have a length of tens of centimeters.The main plasma parameters were measured at various distances along the tube.The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge,just as it happens during the formation of red sprites.