Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru...Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa).展开更多
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg...Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.展开更多
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the c...Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.展开更多
We established a cDNA-AFLP (amplified fragment length polymorphism) system for Populus euphratica, after optimizing several key factors. The results show that optimized CTAB method is suitable for the extraction of ...We established a cDNA-AFLP (amplified fragment length polymorphism) system for Populus euphratica, after optimizing several key factors. The results show that optimized CTAB method is suitable for the extraction of ideal RNA from P euphratica; the double-stranded cDNA (ds-cDNA) is completely digested by the combination of EcoRI and MseI for 4.5 h; the reducible result can be obtained when the preamplification products were diluted 10-fold for selective amplification templates. The amplification products resulting from this reaction system were determined by silver staining and the fragments were clear and stable. Detected by RT-PCR, the optimized differential display cDNA-AFLP technique can accurately reflect the true differences of gene expressions among plants. In addition, 42 pairs of primer arrays, producing repeatable and prolific bands, were successfully selected by this improved method. This investigation establishes a cDNA-AFLP system for P. euphratica, which forms a basis for further study on stress-response genes in P. euphratica.展开更多
To investigate the stress response characteristics and shear stress transfer mechanism of BFRP(basalt fiber reinforced plastics)anchors under rainfall conditions and to explore the reinforcement effect of BFRP anchors...To investigate the stress response characteristics and shear stress transfer mechanism of BFRP(basalt fiber reinforced plastics)anchors under rainfall conditions and to explore the reinforcement effect of BFRP anchors,a comparative indoor physical model test was conducted in this study using loess mudstone slope as a typical case,and multi-attribute response data,such as slope displacement,BFRP anchor strain and axial force,were obtained.Based on the variation law of slope displacement,it can be concluded that the deformation displacement of the slope on the side reinforced by BFRP anchors is smaller than that of slopes reinforced with steel anchors;the bearing capacity of BFRP anchor is given priority in time,and the anchoring effect of BFRP anchor at the top of the slope is given priority,and the axial force value of anchor is characterized by a surface amplification effect in space;the axial force is higher around the anchor head and tends to decay as a negative exponential function as the anchor extends in the direction of the interior of the slope;the shear stress of BFRP anchor and anchorage body are unevenly distributed along the axial direction,with the maximum value occurring in the free section near the slope surface and decreases as the BFRP anchor extends towards the interior of the slope.These results can provide a theoretical basis for the optimal design of BFRP anchors.展开更多
Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and or...Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect.展开更多
Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete sl...Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete slowness integration method in the calculation of Green's functions, we obtained the focal mechanisms of these earthquakes using long-period waveforms of regional body waves recorded by the China Digital Seismograph Network (CDSN) by means of moment tensor inversion method in frequency domain. The results inverted indicate that the focal mechanisms of these two earthquakes were similar to each other. Their principal compressional stresses are in NW-SE direction and principal tensional stresses are in NE-SW direction. It turns out that the occurrence of the two earthquakes was controlled by the same tectonic environment related to the collision of the Philippine Plate and the Eurasian Plates. On the other hand, the results imply that the stress field in the seismogenic region has a significant change after the Ms=6.0 earthquake. It may be proposed that the occurrence of the Ms=6. 1 earthquake could be related to the stress field adjustment caused by the Ms=6.0 earthquake.展开更多
This paper challenges the concept that the essential element in wound healing is to offload pressure. We suggest a change in approach that recognizes the integumentary system as one which, like all other body systems,...This paper challenges the concept that the essential element in wound healing is to offload pressure. We suggest a change in approach that recognizes the integumentary system as one which, like all other body systems, adapts to the stresses put upon it. We use a clinical case example to illustrate the use of intentional mechanical stress to promote wound healing and include a review of the relevant literature. The intent of this publication is to call for a new look at clinical practice regarding wound healing and to call for future research directed at investigation of this theory.展开更多
A significant negative aspect in the operation of bridge-type cranes are the technical problems associated with wear of the wheels and the crane track,which causes crane skewing.The main causes of crane skewing includ...A significant negative aspect in the operation of bridge-type cranes are the technical problems associated with wear of the wheels and the crane track,which causes crane skewing.The main causes of crane skewing include unevenness of the crane track,unequal loading of the traction drives depending on the position of the crane trolley,slips and different sizes of travel wheels and combinations of these causes.Firstly,this paper presents a design solution that can be used to detect the magnitude of mechanical stress and deformation of the steel structure of the crane,caused by the effects of skewing.The mechanical stress generated by the transverse forces of the deformed geometric shape of the crane bridge structure is recorded by mechanical stress detectors installed in the inner corners of the crane bridge.The resulting electrical signal from element mechanical voltage detectors,loaded by axial forces,can be used for feedback control of separate crane travel drives controlled by frequency converters.Secondly,this paper presents the calculation of the lateral transverse forces according to CSN 270103 and the determination of the values of mechanical stresses of the deformed steel structure of the crane bridge of a two-girder bridge crane using the finite element method in the program MSC.MARC 2019.Finally,this paper presents the structural and strength design of mechanical stress detectors and the conclusions of laboratory tests of axial force loading of mechanical stress detectors on the test equipment.At the same time,it presents records of the measured axial forces acting in the mechanical stress detectors,arising from the deformation and warping of the crane bridge by the known magnitude of the axial force acting on the crossbeam and from the deformation of the crane bridge caused by the crane operating modes.展开更多
Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunologi- cal response. The present study investigated the impact of a 3-min mechanical perturbation mimicking...Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunologi- cal response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopusjaponicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immnne connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity fimctions. Therefore, these ef- fects should be considered for developing better husbandry procedures.展开更多
The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles a...The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues.Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.展开更多
We present an accurate through silicon via (TSV) thermal mechanical stress analytical model which is verified by using finite element method (FEM). The results show only a very small error. By using the proposed a...We present an accurate through silicon via (TSV) thermal mechanical stress analytical model which is verified by using finite element method (FEM). The results show only a very small error. By using the proposed analytical model, we also study the impacts of the TSV radius size, the thickness, the material of Cu diffusion barrier, and liner on the stress. It is found that the liner can absorb the stress effectively induced by coefficient of thermal expansion mismatch. The stress decreases with the increase of liner thickness. Benzocyclobutene (BCB) as a liner material is better than SiO2. However, the Cu diffusion barrier has little effect on the stress. The stress with a smaller TSV has a smaller value. Based on the analytical model, we explore and validate the linear superposition principle of stress tensors and demonstrate the accuracy of this method against detailed FEM simulations. The analytic solutions of stress of two TSVs and three TSVs have high precision against the finite element result.展开更多
On March 6,2010,an earthquake of M L4. 5 took place in Luanxian,Hebei Province,with plenty of foreshocks and aftershocks. From December 2009 to March 2010,a series of M L≥ 2. 5 earthquakes were recorded by the digita...On March 6,2010,an earthquake of M L4. 5 took place in Luanxian,Hebei Province,with plenty of foreshocks and aftershocks. From December 2009 to March 2010,a series of M L≥ 2. 5 earthquakes were recorded by the digital seismic network of the capital region,which were selected to calculate the apparent stress in this region. The results show that,firstly,a high value anomaly of apparent stress appeared before the M L4. 5 and peak value appeared on the main shock, which then decreased after the ML4. 5 earthquake. The apparent stress of the main shock is much greater than that of most aftershocks,the sequence type is considered as a main shock-aftershock. Secondly,the size of apparent stress perfectly reflects the state of the stress field in the hypocenter region,and we can discuss seismic sequence properties through the changing process of apparent stress,in combination with the traditional methods to identify a sequence more accurately. Finally,in the case of magnitude less than or equal to M L3. 3,correlation between magnitude and apparent stress is positive.展开更多
Accurate prediction of stress-strain behavior of metals as a function of arbitrary temperature and strain rate paths has remained a challenge. The Mechanical Threshold Stress constitutive model is one formalism that h...Accurate prediction of stress-strain behavior of metals as a function of arbitrary temperature and strain rate paths has remained a challenge. The Mechanical Threshold Stress constitutive model is one formalism that has emerged following several decades of research. Vast experience has accumulated with the application of the Mechanical Threshold Stress model over a wide variety of pure metals and alloys. Out of this has arisen common trends across metal systems. The magnitude of activation energies presents one example of this, where these variables consistently increase in magnitude as the obstacle to dislocation motion transitions from short range to long range. Trends in strain hardening are also observed. In Face-Centered Cubic metals the magnitude of strain hardening scales with the stacking fault energy;trends in Body-Centered Cubic metals are less clear. Model parameters derived for over twenty metals and alloys are tabulated. Common trends should guide future application of the MTS model and further model development.展开更多
The source parameters of the Yingjiang earthquake sequences in 2008 are obtained by applying spectral analysis and Brunes source model,based on the digital waveform data recorded by the Yunnan Digital Seismic Network....The source parameters of the Yingjiang earthquake sequences in 2008 are obtained by applying spectral analysis and Brunes source model,based on the digital waveform data recorded by the Yunnan Digital Seismic Network.The correlation coefficients are calculated using the low-frequency spectral amplitudes of 2 events recorded by a same station,then,events with similar focal mechanism are grouped using the clustering analysis method.Compared to the obtained focal mechanisms,it is found that there are good correlations with the azimuth of P axes in each clustering group,and the larger the correlation coefficient,the closer the azimuths of P axes.We divide the Yingjiang area into 3 regions to analyze the stress level and stress direction by combining the source parameters and the mean focal mechanism of each group.The results show:The change and transformation of the focal mechanism types at different stages can represent the temporal characteristics of the regional stress field.If the earthquake focal mechanism types are concentrated in a time period and switch to the direction of regional stress field,it may be a sign of strong earthquake.There is some relationship between the stress drop and the type of focal mechanism.Those earthquakes with stress fields revealed by focal mechanism types closer to the regional tectonic stress field will have higher stress drop,while those with the focal mechanism-revealed stress fields differing a lot from the regional tectonic stress field will generally have a lower stress drop.展开更多
This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and af...This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and after” comparison approach taking readings on pipe base metal, weld area and heat affected zone (HAZ) before and after hydrotest. Test results were compared with X-ray testing results for welded joints and with metallographic testing. Test results demonstrate the relevance of applied test conditions and redistribution of residual stresses. A new equation was established for estimating the residual (technological) and operating stresses in other pipelines with a tolerance of 15% in the field of elastic deformation (up to the yield point), according to Hooke law.展开更多
Large-strain deformations introduce several confounding factors that affect the application of the Mechanical Threshold Stress model. These include the decrease with the increasing stress of the normalized activation ...Large-strain deformations introduce several confounding factors that affect the application of the Mechanical Threshold Stress model. These include the decrease with the increasing stress of the normalized activation energy characterizing deformation kinetics, the tendency toward Stage IV hardening at high strains, and the influence of crystallographic texture. Minor additions to the Mechanical Threshold Stress model are introduced to account for variations of the activation energy and the addition of Stage IV hardening. Crystallographic texture cannot be modeled using an isotropic formulation, but some common trends when analyzing predominantly shear deformation followed by uniaxial deformation are described. Comparisons of model predictions with measurements in copper processed using Equal Channel Angular Pressing are described.展开更多
The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin ...The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.展开更多
Broken gap is an extremely dangerous state in the service of high-speed rails,and the violent wheel–rail impact forces will be intensified when a vehicle passes the gap at high speeds,which may cause a secondary frac...Broken gap is an extremely dangerous state in the service of high-speed rails,and the violent wheel–rail impact forces will be intensified when a vehicle passes the gap at high speeds,which may cause a secondary fracture to rail and threaten the running safety of the vehicle.To recognize the damage tolerance of rail fracture length,the implicit–explicit sequential approach is adopted to simulate the wheel–rail high-frequency impact,which considers the factors such as the coupling effect between frictional contact and structural vibration,nonlinear material and real geometric profile.The results demonstrate that the plastic deformation and stress are distributed in crescent shape during the impact at the back rail end,increasing with the rail fracture length.The axle box acceleration in the frequency domain displays two characteristic modes with frequencies around 1,637 and 404 Hz.The limit of the rail fracture length is 60 mm for high-speed railway at a speed of 250 km/h.展开更多
基金Project(51021004)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa).
基金sponsored by the National Natural Science Foundation of China(Nos.51134025 and 51274204)the New Century Excellent Talents in University(No.NCET-12-0965)
文摘Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.
基金sponsored by the Earthquake Situation Tracking Program of 2014 (2014020110)the Science and Technological Fund of Earthquake Administration of Xinjiang Uygur Autonomous Region,China (201402)
文摘Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.
基金supported by the National Natural Science Foundation of China (Grant Nos. 30730077,30972339, 31070597)the "948" Project of the State Forestry Administration of China (2007-4-01)the National Key Technologies R&D Program of China(2011BAD38B01)
文摘We established a cDNA-AFLP (amplified fragment length polymorphism) system for Populus euphratica, after optimizing several key factors. The results show that optimized CTAB method is suitable for the extraction of ideal RNA from P euphratica; the double-stranded cDNA (ds-cDNA) is completely digested by the combination of EcoRI and MseI for 4.5 h; the reducible result can be obtained when the preamplification products were diluted 10-fold for selective amplification templates. The amplification products resulting from this reaction system were determined by silver staining and the fragments were clear and stable. Detected by RT-PCR, the optimized differential display cDNA-AFLP technique can accurately reflect the true differences of gene expressions among plants. In addition, 42 pairs of primer arrays, producing repeatable and prolific bands, were successfully selected by this improved method. This investigation establishes a cDNA-AFLP system for P. euphratica, which forms a basis for further study on stress-response genes in P. euphratica.
基金the financial support by the National Key R&D Program of China(No.2018YFC1504901)Science and technology development project of China Railway 11th Bureau Group Co.,LTD(20210601)+4 种基金Science and technology development project of China Railway Lanzhou Bureau Group Co.,LTD(2021046-2)Science and technology program of Gansu Province(Grant No.21JR7RA739)Science and Technology Development Project of China Railway Research Institute Co.Ltd(2017-KJ008-Z008-XB)Science and technology development project of China Railway Ninth Bureau Group Co.,Ltd(DLF-ML-JSFW-202109)The Science and Technology Foundation of Guizhou Province(NO.ZK[2022]Key018)。
文摘To investigate the stress response characteristics and shear stress transfer mechanism of BFRP(basalt fiber reinforced plastics)anchors under rainfall conditions and to explore the reinforcement effect of BFRP anchors,a comparative indoor physical model test was conducted in this study using loess mudstone slope as a typical case,and multi-attribute response data,such as slope displacement,BFRP anchor strain and axial force,were obtained.Based on the variation law of slope displacement,it can be concluded that the deformation displacement of the slope on the side reinforced by BFRP anchors is smaller than that of slopes reinforced with steel anchors;the bearing capacity of BFRP anchor is given priority in time,and the anchoring effect of BFRP anchor at the top of the slope is given priority,and the axial force value of anchor is characterized by a surface amplification effect in space;the axial force is higher around the anchor head and tends to decay as a negative exponential function as the anchor extends in the direction of the interior of the slope;the shear stress of BFRP anchor and anchorage body are unevenly distributed along the axial direction,with the maximum value occurring in the free section near the slope surface and decreases as the BFRP anchor extends towards the interior of the slope.These results can provide a theoretical basis for the optimal design of BFRP anchors.
基金Supported by the Youth Science Foundation of Shanxi Province under Grant No 2013021010-3the National Natural Science Foundation of China under Grant Nos 61434002 and 11404202
文摘Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect.
文摘Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete slowness integration method in the calculation of Green's functions, we obtained the focal mechanisms of these earthquakes using long-period waveforms of regional body waves recorded by the China Digital Seismograph Network (CDSN) by means of moment tensor inversion method in frequency domain. The results inverted indicate that the focal mechanisms of these two earthquakes were similar to each other. Their principal compressional stresses are in NW-SE direction and principal tensional stresses are in NE-SW direction. It turns out that the occurrence of the two earthquakes was controlled by the same tectonic environment related to the collision of the Philippine Plate and the Eurasian Plates. On the other hand, the results imply that the stress field in the seismogenic region has a significant change after the Ms=6.0 earthquake. It may be proposed that the occurrence of the Ms=6. 1 earthquake could be related to the stress field adjustment caused by the Ms=6.0 earthquake.
文摘This paper challenges the concept that the essential element in wound healing is to offload pressure. We suggest a change in approach that recognizes the integumentary system as one which, like all other body systems, adapts to the stresses put upon it. We use a clinical case example to illustrate the use of intentional mechanical stress to promote wound healing and include a review of the relevant literature. The intent of this publication is to call for a new look at clinical practice regarding wound healing and to call for future research directed at investigation of this theory.
文摘A significant negative aspect in the operation of bridge-type cranes are the technical problems associated with wear of the wheels and the crane track,which causes crane skewing.The main causes of crane skewing include unevenness of the crane track,unequal loading of the traction drives depending on the position of the crane trolley,slips and different sizes of travel wheels and combinations of these causes.Firstly,this paper presents a design solution that can be used to detect the magnitude of mechanical stress and deformation of the steel structure of the crane,caused by the effects of skewing.The mechanical stress generated by the transverse forces of the deformed geometric shape of the crane bridge structure is recorded by mechanical stress detectors installed in the inner corners of the crane bridge.The resulting electrical signal from element mechanical voltage detectors,loaded by axial forces,can be used for feedback control of separate crane travel drives controlled by frequency converters.Secondly,this paper presents the calculation of the lateral transverse forces according to CSN 270103 and the determination of the values of mechanical stresses of the deformed steel structure of the crane bridge of a two-girder bridge crane using the finite element method in the program MSC.MARC 2019.Finally,this paper presents the structural and strength design of mechanical stress detectors and the conclusions of laboratory tests of axial force loading of mechanical stress detectors on the test equipment.At the same time,it presents records of the measured axial forces acting in the mechanical stress detectors,arising from the deformation and warping of the crane bridge by the known magnitude of the axial force acting on the crossbeam and from the deformation of the crane bridge caused by the crane operating modes.
基金financially supported by the 863 High Technology Project of the Ministry of Science and Technology (No. 2012AA10A412-4)the Special Funds for the Basic B & D Program in the Central Non-profit Research Institutes (No. 2010-cb-03)+1 种基金Science and Technology Development Planning Project of Shandong Province (No. 2012GGA06021)Science and Technology Development Fund of Shinan district of Qingdao (No. 2011-5-023-QT)
文摘Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunologi- cal response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopusjaponicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immnne connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity fimctions. Therefore, these ef- fects should be considered for developing better husbandry procedures.
基金Project supported by the National Natural Science Foundation of China (Grant No.11904042)the Natural Science Foundation of Chongqing,China (Grant No.cstc2019jcyj-msxmX0534)the Science and Technology Research Program of Chongqing Municipal Education Commission,China (Grant No.KJQN202000617)。
文摘The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues.Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.
基金supported by the National Natural Science Foundation of China(Grant No.61334003)the Kunshan Innovation Institute of Xidian University
文摘We present an accurate through silicon via (TSV) thermal mechanical stress analytical model which is verified by using finite element method (FEM). The results show only a very small error. By using the proposed analytical model, we also study the impacts of the TSV radius size, the thickness, the material of Cu diffusion barrier, and liner on the stress. It is found that the liner can absorb the stress effectively induced by coefficient of thermal expansion mismatch. The stress decreases with the increase of liner thickness. Benzocyclobutene (BCB) as a liner material is better than SiO2. However, the Cu diffusion barrier has little effect on the stress. The stress with a smaller TSV has a smaller value. Based on the analytical model, we explore and validate the linear superposition principle of stress tensors and demonstrate the accuracy of this method against detailed FEM simulations. The analytic solutions of stress of two TSVs and three TSVs have high precision against the finite element result.
基金funded by the Spark Program of the Earthquake Sciences(XH14005Y)Seismic Situation Tracing Youth Task in 2015(2015010307)Subjects of "Earthquake Monitoring,Prediction and Scieatific Research of 2015",Earthquake Administration of Tianjin Municipality,China(150201)
文摘On March 6,2010,an earthquake of M L4. 5 took place in Luanxian,Hebei Province,with plenty of foreshocks and aftershocks. From December 2009 to March 2010,a series of M L≥ 2. 5 earthquakes were recorded by the digital seismic network of the capital region,which were selected to calculate the apparent stress in this region. The results show that,firstly,a high value anomaly of apparent stress appeared before the M L4. 5 and peak value appeared on the main shock, which then decreased after the ML4. 5 earthquake. The apparent stress of the main shock is much greater than that of most aftershocks,the sequence type is considered as a main shock-aftershock. Secondly,the size of apparent stress perfectly reflects the state of the stress field in the hypocenter region,and we can discuss seismic sequence properties through the changing process of apparent stress,in combination with the traditional methods to identify a sequence more accurately. Finally,in the case of magnitude less than or equal to M L3. 3,correlation between magnitude and apparent stress is positive.
文摘Accurate prediction of stress-strain behavior of metals as a function of arbitrary temperature and strain rate paths has remained a challenge. The Mechanical Threshold Stress constitutive model is one formalism that has emerged following several decades of research. Vast experience has accumulated with the application of the Mechanical Threshold Stress model over a wide variety of pure metals and alloys. Out of this has arisen common trends across metal systems. The magnitude of activation energies presents one example of this, where these variables consistently increase in magnitude as the obstacle to dislocation motion transitions from short range to long range. Trends in strain hardening are also observed. In Face-Centered Cubic metals the magnitude of strain hardening scales with the stacking fault energy;trends in Body-Centered Cubic metals are less clear. Model parameters derived for over twenty metals and alloys are tabulated. Common trends should guide future application of the MTS model and further model development.
基金funded under the National Science and Technology Support Program of the 12th "Five-year Plan",China(2012BAK19B02)
文摘The source parameters of the Yingjiang earthquake sequences in 2008 are obtained by applying spectral analysis and Brunes source model,based on the digital waveform data recorded by the Yunnan Digital Seismic Network.The correlation coefficients are calculated using the low-frequency spectral amplitudes of 2 events recorded by a same station,then,events with similar focal mechanism are grouped using the clustering analysis method.Compared to the obtained focal mechanisms,it is found that there are good correlations with the azimuth of P axes in each clustering group,and the larger the correlation coefficient,the closer the azimuths of P axes.We divide the Yingjiang area into 3 regions to analyze the stress level and stress direction by combining the source parameters and the mean focal mechanism of each group.The results show:The change and transformation of the focal mechanism types at different stages can represent the temporal characteristics of the regional stress field.If the earthquake focal mechanism types are concentrated in a time period and switch to the direction of regional stress field,it may be a sign of strong earthquake.There is some relationship between the stress drop and the type of focal mechanism.Those earthquakes with stress fields revealed by focal mechanism types closer to the regional tectonic stress field will have higher stress drop,while those with the focal mechanism-revealed stress fields differing a lot from the regional tectonic stress field will generally have a lower stress drop.
文摘This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and after” comparison approach taking readings on pipe base metal, weld area and heat affected zone (HAZ) before and after hydrotest. Test results were compared with X-ray testing results for welded joints and with metallographic testing. Test results demonstrate the relevance of applied test conditions and redistribution of residual stresses. A new equation was established for estimating the residual (technological) and operating stresses in other pipelines with a tolerance of 15% in the field of elastic deformation (up to the yield point), according to Hooke law.
文摘Large-strain deformations introduce several confounding factors that affect the application of the Mechanical Threshold Stress model. These include the decrease with the increasing stress of the normalized activation energy characterizing deformation kinetics, the tendency toward Stage IV hardening at high strains, and the influence of crystallographic texture. Minor additions to the Mechanical Threshold Stress model are introduced to account for variations of the activation energy and the addition of Stage IV hardening. Crystallographic texture cannot be modeled using an isotropic formulation, but some common trends when analyzing predominantly shear deformation followed by uniaxial deformation are described. Comparisons of model predictions with measurements in copper processed using Equal Channel Angular Pressing are described.
文摘The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.
基金The work is supported by the National Natural Science Foundation of China(Nos.51608459,51778542 and U1734207)Fundamental Research Funds for the Central Universities(No.2682018CX01)Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University.
文摘Broken gap is an extremely dangerous state in the service of high-speed rails,and the violent wheel–rail impact forces will be intensified when a vehicle passes the gap at high speeds,which may cause a secondary fracture to rail and threaten the running safety of the vehicle.To recognize the damage tolerance of rail fracture length,the implicit–explicit sequential approach is adopted to simulate the wheel–rail high-frequency impact,which considers the factors such as the coupling effect between frictional contact and structural vibration,nonlinear material and real geometric profile.The results demonstrate that the plastic deformation and stress are distributed in crescent shape during the impact at the back rail end,increasing with the rail fracture length.The axle box acceleration in the frequency domain displays two characteristic modes with frequencies around 1,637 and 404 Hz.The limit of the rail fracture length is 60 mm for high-speed railway at a speed of 250 km/h.