Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on...Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on conventional rigid batteries that are frequently charged or replaced and are incompatible with the skin,leading to a discontinuity in complex therapeutic tasks related to human health monitoring and human-machine interaction.Stretchable triboelectric nanogenerator(TENG)is a high-efficiency energy harvesting technology that converts mechanical into electrical energy,effectively powering wearable bioelectronic devices.This study comprehensively overviews recent advances in stretchable TENG for use in wearable bioelectronic devices.The working mechanism of stretchable TENG is initially explained.A comprehensive discussion presents the approaches for fabricating stretchable TENG,including the design of stretchable structures and the selection of stretchable materials.Furthermore,applications of wearable bioelectronic devices based on stretchable TENG in human health monitoring(body movements,pulse,and respiration)and human-machine interaction(touch panels,machine control,and virtual reality)are introduced.Ultimately,the challenges and developmental trends regarding wearable bioelectronic devices based on stretchable TENG are elaborated.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph...Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.展开更多
Given the rise in the popularity of wearable electronics that are able to deform into desirable configurations while maintaining electrochemical functionality,stretchable and flexible(hybrid)supercapacitors(SCs)have b...Given the rise in the popularity of wearable electronics that are able to deform into desirable configurations while maintaining electrochemical functionality,stretchable and flexible(hybrid)supercapacitors(SCs)have become increasingly of interest as innovative energy storage devices.Their outstanding power density,long lifetime with low capacitance loss,and appropriate energy density,in particular in hybrid cases make them ideal candidates for flexible electronics.The aim of this review paper is to provide an in-depth discussion of these stretchable and flexible SCs ranging from fabrication to electro-mechanical properties.This review paper begins with a short overview of the fundamentals of charge storage mechanisms and different types of multivalent metal-ion hybrid SCs.The research methods leading up to the current state of these stretchable and flexible SCs are then presented.This is followed by an in-depth presentation of the challenges associated with the fabrication methods for different configurations.Proposed novel strategies to maximize the elastic and electrochemical properties of stretchable/flexible or quasi-solid-state SCs are classified and the pros and cons associated with each are shown.The advances in mechanical properties and the expected advancements for the future of these SCs are discussed in the last section.展开更多
In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device compon...In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device components,such as with serpentine interconnects or buckled substrates.However,the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics.Therefore,intrinsically stretch-able optoelectronics have been proposed as an alternative approach.Herein,we review the recent advances in soft elec-tronic materials for application in intrinsically stretchable optoelectronic devices.First,we introduce various intrinsically stretchable electronic materials,comprised of electronic fillers,elastomers,and surfactants,and exemplify different in-trinsically stretchable conducting and semiconducting composites.We also describe the processing methods used to fabricate the electrodes,interconnections,charge transport layers,and optically active layers used in intrinsically stretch-able optoelectronic devices.Subsequently,we review representative examples of intrinsically stretchable optoelectronic devices,including light-emitting capacitors,light-emitting diodes,photodetectors,and photovoltaics.Finally,we briefly discuss intrinsically stretchable integrated optoelectronic systems.展开更多
Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped ...Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.展开更多
Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching...Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.展开更多
With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-he...With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.展开更多
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deform...Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.展开更多
Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to devel...Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to develop thermoelectric materials with excellent stretchability,durable thermoelectric properties,wearable comfort,and multifunctional sensing properties simultaneously.Herein,an advanced preparation strategy combining electrospinning and spraying technology is proposed to prepare carbon nanotube(CNT)/polyvinyl pyrrolidone(PVP)/polyurethane(PU)composite thermoelectric fabrics that have high air permeability and stretchability(~250%)close to those of pure PU nanofiber fabrics.Furthermore,PVP can not only improve the dispersion of CNTs but also act as interfacial binders between the CNT and the elastic PU skeleton.Consequently,both the electrical conductivity and the Seebeck coefficient remain unchanged even after bending 1000 times.In addition,self-powered sensors for the mutual conversion of finger temperature and language and detection of the movement of joints to optimize an athlete's movement state were successfully fabricated.This study paves the way for stretchable thermoelectric fabrics with fascinating applications in smart wearable fields such as power generation,health monitoring,and human–computer interaction.展开更多
Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanic...Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanical bending or stretching,outstanding electronic/optoelectronic properties,good transparency,and excellent geometry.Herein,latest summaries in the unique structure and properties of nanofiber/nanowire function materials and their applications for flexible and stretchable sensor are highlighted.Several types of high-performance nanofiber/nanowire-based flexible pressure and stretchable sensors are also reviewed.Finally,a conclusion and prospect for 1D nanofiber/nanowires-based flexible and stretchable sensors are also intensively discussed.This summary offers new insights for the development of flexible and stretchable sensor based 1D nanostructure in next-generation flexible electronics.展开更多
Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they ...Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film.展开更多
Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrog...Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices.展开更多
As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical def...As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.展开更多
Earth-abundant magnetite(Fe_(3)O_(4))as cathode materials in aqueous zinc-ion batteries(ZIBs)is limited by its very low capacity and poor cycling.Here,a combined strategy based on carbon coating and electrolyte optimi...Earth-abundant magnetite(Fe_(3)O_(4))as cathode materials in aqueous zinc-ion batteries(ZIBs)is limited by its very low capacity and poor cycling.Here,a combined strategy based on carbon coating and electrolyte optimization is adopted to improve the performance of Fe_(3)O_(4).The Zn-Fe_(3)O_(4)@C batteries display specific capacities of 93 mAh g^(−1) and 81%capacity retention after 200 cycles.Such performance is attributed to the enhanced electrical conductivity and structural stability of Fe_(3)O_(4)@C nanocomposites with suppressed iron dissolution.Experimental analysis reveals that the charge storage is contributed by diffusion-limited redox reactions and surface-controlled pseudocapacitance.A stretchable Zn-Fe_(3)O_(4)@C battery is further fabricated,showing stable performance when it is bent or stretched.Fe_(3)O_(4) is a promising cathode material for cost-effective,safe,sustainable and wearable energy supplies.展开更多
The recent development on wearable and stretchable electronics calls for skin conformable power sources that are beyond current battery technologies.Among the many novel energy devices being explored,triboelectric nan...The recent development on wearable and stretchable electronics calls for skin conformable power sources that are beyond current battery technologies.Among the many novel energy devices being explored,triboelectric nanogenerator(TENG)made from intrinsically stretchable materials has a great potential to meet the above requirement as being both soft and efficient.In this paper,we present a lithography-free and low-cost TENG device comprising a porous-structured PDMS layer and a stretchable PEDOT:PSS electrode.The porous PDMS structure is formed by using self-assembled polystyrene beads as the sacrificial template and it is highly ordered with great uniformity and high structural stability under compression force.Moreover,the porous PDMS TENG exhibits improved output voltage and current of 1.65 V and 0.54 nA compared to its counterpart with non-porous PDMS with 0.66 V and 0.34 nA.The effect of different loading force and frequency on the output response of the TENG device has also been studied.This work could shed light on diverse structural modification methods for improving the performance of PDMS-based TENG and the development of intrinsically stretchable TENG for wearable device applications.展开更多
The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,cau...The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.展开更多
This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat ...This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat is being transferred with thermal radiation and the Joule heating. A system of ordinary differential equations is obtained by appropriate transformations. Convergent series solutions are obtained. Effects of various parameters are analyzed for the velocity and temperature. Numerical values of the skin friction coefficient and the Nusselt number are tabulated and examined. It can be seen that the radial velocity is affected in the same manner with both porous and local inertial parameters. A skin friction coefficient depicts the same impact on both disks for both nanofluids with larger stretching parameters.展开更多
With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility a...With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility and low thermal conductivity,thus hold great prospect in applications as a flexible power generator from dissipated heat.Nevertheless,the weak electrical transport behaviors of organic TE materials have severely impeded their development.Moreover,compared with p-type organic TE materials,stable and high-performance n-type counterparts are more difficult to obtain.Here,we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi;S;@Bi nanorods as fillers,showing a Seebeck coefficient-159.4μV/K at room temperature.Further,a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator(TEG),whose function to output stable voltages responding to temperature differences has been demonstrated.The in situ output performance of the TEG under stretching could withstand up to 75%elongation,and stability test showed little degradation over a one-month period in the air.This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply.展开更多
The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretch...The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretchable electrochemical energy storage devices with wavy structures are discussed. Finally, the present problems and challenges are reviewed, and possible directions for future research are outlined.展开更多
基金supported by the National Natural Science Foundation of China(No.52203310)the China Postdoctoral Science Foundation(Nos.2023T160195 and 2023M730993)+1 种基金the Henan Province Science and Technology Research and Development Program Joint Fund Advantageous Discipline Cultivation Project(No.232301420033)the Henan Agricultural University Start-up Grant(No.30501054).
文摘Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on conventional rigid batteries that are frequently charged or replaced and are incompatible with the skin,leading to a discontinuity in complex therapeutic tasks related to human health monitoring and human-machine interaction.Stretchable triboelectric nanogenerator(TENG)is a high-efficiency energy harvesting technology that converts mechanical into electrical energy,effectively powering wearable bioelectronic devices.This study comprehensively overviews recent advances in stretchable TENG for use in wearable bioelectronic devices.The working mechanism of stretchable TENG is initially explained.A comprehensive discussion presents the approaches for fabricating stretchable TENG,including the design of stretchable structures and the selection of stretchable materials.Furthermore,applications of wearable bioelectronic devices based on stretchable TENG in human health monitoring(body movements,pulse,and respiration)and human-machine interaction(touch panels,machine control,and virtual reality)are introduced.Ultimately,the challenges and developmental trends regarding wearable bioelectronic devices based on stretchable TENG are elaborated.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
基金financially supported by the National Natural Science Foundation of China(52073302,52103311)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.14JJ1001).
文摘Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
文摘Given the rise in the popularity of wearable electronics that are able to deform into desirable configurations while maintaining electrochemical functionality,stretchable and flexible(hybrid)supercapacitors(SCs)have become increasingly of interest as innovative energy storage devices.Their outstanding power density,long lifetime with low capacitance loss,and appropriate energy density,in particular in hybrid cases make them ideal candidates for flexible electronics.The aim of this review paper is to provide an in-depth discussion of these stretchable and flexible SCs ranging from fabrication to electro-mechanical properties.This review paper begins with a short overview of the fundamentals of charge storage mechanisms and different types of multivalent metal-ion hybrid SCs.The research methods leading up to the current state of these stretchable and flexible SCs are then presented.This is followed by an in-depth presentation of the challenges associated with the fabrication methods for different configurations.Proposed novel strategies to maximize the elastic and electrochemical properties of stretchable/flexible or quasi-solid-state SCs are classified and the pros and cons associated with each are shown.The advances in mechanical properties and the expected advancements for the future of these SCs are discussed in the last section.
基金supported by Institute for Basic Science(IBS-R006-A1)supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(2021R1I1A1A01060389).
文摘In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device components,such as with serpentine interconnects or buckled substrates.However,the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics.Therefore,intrinsically stretch-able optoelectronics have been proposed as an alternative approach.Herein,we review the recent advances in soft elec-tronic materials for application in intrinsically stretchable optoelectronic devices.First,we introduce various intrinsically stretchable electronic materials,comprised of electronic fillers,elastomers,and surfactants,and exemplify different in-trinsically stretchable conducting and semiconducting composites.We also describe the processing methods used to fabricate the electrodes,interconnections,charge transport layers,and optically active layers used in intrinsically stretch-able optoelectronic devices.Subsequently,we review representative examples of intrinsically stretchable optoelectronic devices,including light-emitting capacitors,light-emitting diodes,photodetectors,and photovoltaics.Finally,we briefly discuss intrinsically stretchable integrated optoelectronic systems.
基金supported by National Natural Science Foundation of China (NSFC) (No. 61804103)National Key R&D Program of China (No. 2017YFA0205002)+8 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Nos. 18KJA535001 and 14KJB 150020)Natural Science Foundation of Jiangsu Province of China (Nos. BK20170343 and BK20180242)China Postdoctoral Science Foundation (No. 2017M610346)State Key Laboratory of Silicon Materials, Zhejiang University (No. SKL2018-03)Nantong Municipal Science and Technology Program (No. GY12017001)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University (KSL201803)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.
基金This work was financially supported by Beijing Natural Science Foundation(2212033)National Natural Science Foundation of China(51971008,U1832138,51731002 and 51671010)+1 种基金the Fundamental Research Funds for the Central UniversitiesOpen access funding provided by Shanghai Jiao Tong University
文摘Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.
基金support from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)+1 种基金the Guangdong Natural Science Funds Grant(2018A030313400),the Science and Technology Program of Guangzhou(201904010456)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd09).
文摘With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.
基金J.W.acknowledges financial supports from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22lgqb17).
文摘Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2232020A-08National Natural Science Foundation of China,Grant/Award Numbers:51973027,52003044。
文摘Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to develop thermoelectric materials with excellent stretchability,durable thermoelectric properties,wearable comfort,and multifunctional sensing properties simultaneously.Herein,an advanced preparation strategy combining electrospinning and spraying technology is proposed to prepare carbon nanotube(CNT)/polyvinyl pyrrolidone(PVP)/polyurethane(PU)composite thermoelectric fabrics that have high air permeability and stretchability(~250%)close to those of pure PU nanofiber fabrics.Furthermore,PVP can not only improve the dispersion of CNTs but also act as interfacial binders between the CNT and the elastic PU skeleton.Consequently,both the electrical conductivity and the Seebeck coefficient remain unchanged even after bending 1000 times.In addition,self-powered sensors for the mutual conversion of finger temperature and language and detection of the movement of joints to optimize an athlete's movement state were successfully fabricated.This study paves the way for stretchable thermoelectric fabrics with fascinating applications in smart wearable fields such as power generation,health monitoring,and human–computer interaction.
基金National Natural Science Foundation of China(NSFC Grant No.61625404)the Science and Technology Development Plan of Jilin Province(20190103135JH)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001).
文摘Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanical bending or stretching,outstanding electronic/optoelectronic properties,good transparency,and excellent geometry.Herein,latest summaries in the unique structure and properties of nanofiber/nanowire function materials and their applications for flexible and stretchable sensor are highlighted.Several types of high-performance nanofiber/nanowire-based flexible pressure and stretchable sensors are also reviewed.Finally,a conclusion and prospect for 1D nanofiber/nanowires-based flexible and stretchable sensors are also intensively discussed.This summary offers new insights for the development of flexible and stretchable sensor based 1D nanostructure in next-generation flexible electronics.
基金supported by NSF(DMI-0328162 and ECCS-0824129)the National Natural Science Foundation of China (10820101048)Ministry of Education of China,and the National Basic Research Program of China(2007CB936803).
文摘Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film.
基金supported by the National Natural Science Foundation of China(No.21778052 and No.21975240)by the Natural Science Foundation of Anhui Province(No.1908085J19)the Talent Research Foundation of Hefei University(No.18-19RC08)。
文摘Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices.
基金This work was in part supported by the International Partnership Program of Chinese Academy of Science(Grant No.154232KYSB20200016)the Suzhou Science and Technology Support Project(Grant No.SYG201905)+2 种基金the National Key Research and Development Program of China(Grant No.2020YFC2007400)H.C.acknowledges the supports provided by the National Science Foundation(NSF)(Grant No.ECCS-1933072)the National Heart,Lung,And Blood Institute of the National Institutes of Health under Award Number R61HL154215,and Penn State University.The partial support from the Center for Biodevices,the College of Engineering,and the Center for Security Research and Education at Penn State is also acknowledged.
文摘As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.
基金This work was supported by National Natural Science Foundation of China(51873088)the Tianjin Municipal Science and Technology Commission(18JCZDJC38400)in China.
文摘Earth-abundant magnetite(Fe_(3)O_(4))as cathode materials in aqueous zinc-ion batteries(ZIBs)is limited by its very low capacity and poor cycling.Here,a combined strategy based on carbon coating and electrolyte optimization is adopted to improve the performance of Fe_(3)O_(4).The Zn-Fe_(3)O_(4)@C batteries display specific capacities of 93 mAh g^(−1) and 81%capacity retention after 200 cycles.Such performance is attributed to the enhanced electrical conductivity and structural stability of Fe_(3)O_(4)@C nanocomposites with suppressed iron dissolution.Experimental analysis reveals that the charge storage is contributed by diffusion-limited redox reactions and surface-controlled pseudocapacitance.A stretchable Zn-Fe_(3)O_(4)@C battery is further fabricated,showing stable performance when it is bent or stretched.Fe_(3)O_(4) is a promising cathode material for cost-effective,safe,sustainable and wearable energy supplies.
基金partially funded by a Washington University Collaboration Initiation Grant (CIG)a Michigan State University Foundation Strategic Partnership Grant (16SPG-Full-3236)
文摘The recent development on wearable and stretchable electronics calls for skin conformable power sources that are beyond current battery technologies.Among the many novel energy devices being explored,triboelectric nanogenerator(TENG)made from intrinsically stretchable materials has a great potential to meet the above requirement as being both soft and efficient.In this paper,we present a lithography-free and low-cost TENG device comprising a porous-structured PDMS layer and a stretchable PEDOT:PSS electrode.The porous PDMS structure is formed by using self-assembled polystyrene beads as the sacrificial template and it is highly ordered with great uniformity and high structural stability under compression force.Moreover,the porous PDMS TENG exhibits improved output voltage and current of 1.65 V and 0.54 nA compared to its counterpart with non-porous PDMS with 0.66 V and 0.34 nA.The effect of different loading force and frequency on the output response of the TENG device has also been studied.This work could shed light on diverse structural modification methods for improving the performance of PDMS-based TENG and the development of intrinsically stretchable TENG for wearable device applications.
文摘The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability.
文摘This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat is being transferred with thermal radiation and the Joule heating. A system of ordinary differential equations is obtained by appropriate transformations. Convergent series solutions are obtained. Effects of various parameters are analyzed for the velocity and temperature. Numerical values of the skin friction coefficient and the Nusselt number are tabulated and examined. It can be seen that the radial velocity is affected in the same manner with both porous and local inertial parameters. A skin friction coefficient depicts the same impact on both disks for both nanofluids with larger stretching parameters.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0702100 and 2018YFB0703600)the National Natural Science Foundation of China(Grant Nos.51872009 and 92066203)+1 种基金Beijing Nova Programme Interdisciplinary Cooperation Projectthe Fundamental Research Funds for the Central Universities,China。
文摘With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility and low thermal conductivity,thus hold great prospect in applications as a flexible power generator from dissipated heat.Nevertheless,the weak electrical transport behaviors of organic TE materials have severely impeded their development.Moreover,compared with p-type organic TE materials,stable and high-performance n-type counterparts are more difficult to obtain.Here,we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi;S;@Bi nanorods as fillers,showing a Seebeck coefficient-159.4μV/K at room temperature.Further,a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator(TEG),whose function to output stable voltages responding to temperature differences has been demonstrated.The in situ output performance of the TEG under stretching could withstand up to 75%elongation,and stability test showed little degradation over a one-month period in the air.This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB932604 and 2014CB932402)the National Natural Science Foundation of China(Grant Nos.51221264,51172242+1 种基金51525206,and U1401243)the Key Research Program of Chinese Academy of Sciences(Grant No.KGZDEW-T06)
文摘The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretchable electrochemical energy storage devices with wavy structures are discussed. Finally, the present problems and challenges are reviewed, and possible directions for future research are outlined.