期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Recent advances in stretchable triboelectric nanogenerators for use in wearable bioelectronic devices 被引量:1
1
作者 Yaling Wang Pengcheng Zhu +2 位作者 Yue Sun Pan Li Yanchao Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期566-590,共25页
Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on... Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on conventional rigid batteries that are frequently charged or replaced and are incompatible with the skin,leading to a discontinuity in complex therapeutic tasks related to human health monitoring and human-machine interaction.Stretchable triboelectric nanogenerator(TENG)is a high-efficiency energy harvesting technology that converts mechanical into electrical energy,effectively powering wearable bioelectronic devices.This study comprehensively overviews recent advances in stretchable TENG for use in wearable bioelectronic devices.The working mechanism of stretchable TENG is initially explained.A comprehensive discussion presents the approaches for fabricating stretchable TENG,including the design of stretchable structures and the selection of stretchable materials.Furthermore,applications of wearable bioelectronic devices based on stretchable TENG in human health monitoring(body movements,pulse,and respiration)and human-machine interaction(touch panels,machine control,and virtual reality)are introduced.Ultimately,the challenges and developmental trends regarding wearable bioelectronic devices based on stretchable TENG are elaborated. 展开更多
关键词 stretchable Triboelectric nanogenerators Structure Human health monitoring Human-machine interaction
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
2
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film stretchable heater Electromagnetic interference shielding
下载PDF
Trunk‑Inspired SWCNT‑Based Wrinkled Films for Highly‑Stretchable Electromagnetic Interference Shielding and Wearable Thermotherapy
3
作者 Xiaofeng Gong Tianjiao Hu +8 位作者 You Zhang Yanan Zeng Ye Zhang Zhenhua Jiang Yinlong Tan Yanhong Zou Jing Wang Jiayu Dai Zengyong Chu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期429-444,共16页
Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph... Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications. 展开更多
关键词 Electromagnetic interference shielding Single-walled carbon nanotubes WRINKLES stretchable THERMOTHERAPY
下载PDF
Configuration-dependent stretchable all-solid-state supercapacitors and hybrid supercapacitors 被引量:2
4
作者 Ahmad Amiri Ashley Bruno Andreas A.Polycarpou 《Carbon Energy》 SCIE CSCD 2023年第5期1-47,共47页
Given the rise in the popularity of wearable electronics that are able to deform into desirable configurations while maintaining electrochemical functionality,stretchable and flexible(hybrid)supercapacitors(SCs)have b... Given the rise in the popularity of wearable electronics that are able to deform into desirable configurations while maintaining electrochemical functionality,stretchable and flexible(hybrid)supercapacitors(SCs)have become increasingly of interest as innovative energy storage devices.Their outstanding power density,long lifetime with low capacitance loss,and appropriate energy density,in particular in hybrid cases make them ideal candidates for flexible electronics.The aim of this review paper is to provide an in-depth discussion of these stretchable and flexible SCs ranging from fabrication to electro-mechanical properties.This review paper begins with a short overview of the fundamentals of charge storage mechanisms and different types of multivalent metal-ion hybrid SCs.The research methods leading up to the current state of these stretchable and flexible SCs are then presented.This is followed by an in-depth presentation of the challenges associated with the fabrication methods for different configurations.Proposed novel strategies to maximize the elastic and electrochemical properties of stretchable/flexible or quasi-solid-state SCs are classified and the pros and cons associated with each are shown.The advances in mechanical properties and the expected advancements for the future of these SCs are discussed in the last section. 展开更多
关键词 1D fiber-like SCs 2D planar supercapacitors 3D sponge and textile structures flexible/stretchable supercapacitors kirigami/origami-inspired structures
下载PDF
Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems 被引量:4
5
作者 Ja Hoon Koo Huiwon Yun +3 位作者 Woongchan Lee Sung-Hyuk Sunwoo Hyung Joon Shim Dae-Hyeong Kim 《Opto-Electronic Advances》 SCIE EI 2022年第8期21-49,共29页
In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device compon... In recent years,significant progress has been achieved in the design and fabrication of stretchable optoelectronic devices.In general,stretchability has been achieved through geometrical modifications of device components,such as with serpentine interconnects or buckled substrates.However,the local stiffness of individual pixels and the limited pixel density of the array have impeded further advancements in stretchable optoelectronics.Therefore,intrinsically stretch-able optoelectronics have been proposed as an alternative approach.Herein,we review the recent advances in soft elec-tronic materials for application in intrinsically stretchable optoelectronic devices.First,we introduce various intrinsically stretchable electronic materials,comprised of electronic fillers,elastomers,and surfactants,and exemplify different in-trinsically stretchable conducting and semiconducting composites.We also describe the processing methods used to fabricate the electrodes,interconnections,charge transport layers,and optically active layers used in intrinsically stretch-able optoelectronic devices.Subsequently,we review representative examples of intrinsically stretchable optoelectronic devices,including light-emitting capacitors,light-emitting diodes,photodetectors,and photovoltaics.Finally,we briefly discuss intrinsically stretchable integrated optoelectronic systems. 展开更多
关键词 stretchable optoelectronics light-emitting capacitors light-emitting diodes PHOTODETECTORS photovoltaics intrinsically stretchable devices
下载PDF
Spiral Steel Wire Based Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor 被引量:18
6
作者 Lingjie Xie Xiaoping Chen +6 位作者 Zhen Wen Yanqin Yang Jihong Shi Chen Chen Mingfa Peng Yina Liu Xuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期36-45,共10页
Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped ... Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals. 展开更多
关键词 Triboelectric NANOGENERATOR stretchable Human motion energy WEARABLE power source ACTIVE GESTURE SENSOR
下载PDF
Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances 被引量:18
7
作者 Yuanhang Yu Peng Yi +5 位作者 Wenbin Xu Xin Sun Gao Deng Xiaofang Liu Jianglan Shui Ronghai Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期77-91,共15页
Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching... Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices. 展开更多
关键词 Electromagnetic interference shielding MXene organohydrogel stretchable conductive film Anti-drying ability Lowtemperature tolerance
下载PDF
Self-Healing,Self-Adhesive and Stable Organohydrogel-Based Stretchable Oxygen Sensor with High Performance at Room Temperature 被引量:13
8
作者 Yuning Liang Zixuan Wu +5 位作者 Yaoming Wei Qiongling Ding Meital Zilberman Kai Tao Xi Xie Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期257-275,共19页
With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-he... With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels. 展开更多
关键词 stretchable oxygen sensors Organohydrogel SELF-HEALING SELF-ADHESIVE Electrochemical reaction
下载PDF
Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring 被引量:8
9
作者 Yuning Liang Qiongling Ding +6 位作者 Hao Wang Zixuan Wu Jianye Li Zhenyi Li Kai Tao Xuchun Gui Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期218-236,共19页
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deform... Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals. 展开更多
关键词 stretchable and transparent humidity sensors Hydrogel film Wireless and wearable sensor Respiration monitoring Ultrasensitive
下载PDF
Highly stretchable,durable,and breathable thermoelectric fabrics for human body energy harvesting and sensing 被引量:8
10
作者 Xinyang He Jia Shi +5 位作者 Yunna Hao Mantang He Jiaxin Cai Xiaohong Qin Liming Wang Jianyong Yu 《Carbon Energy》 SCIE CAS 2022年第4期621-632,共12页
Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to devel... Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to develop thermoelectric materials with excellent stretchability,durable thermoelectric properties,wearable comfort,and multifunctional sensing properties simultaneously.Herein,an advanced preparation strategy combining electrospinning and spraying technology is proposed to prepare carbon nanotube(CNT)/polyvinyl pyrrolidone(PVP)/polyurethane(PU)composite thermoelectric fabrics that have high air permeability and stretchability(~250%)close to those of pure PU nanofiber fabrics.Furthermore,PVP can not only improve the dispersion of CNTs but also act as interfacial binders between the CNT and the elastic PU skeleton.Consequently,both the electrical conductivity and the Seebeck coefficient remain unchanged even after bending 1000 times.In addition,self-powered sensors for the mutual conversion of finger temperature and language and detection of the movement of joints to optimize an athlete's movement state were successfully fabricated.This study paves the way for stretchable thermoelectric fabrics with fascinating applications in smart wearable fields such as power generation,health monitoring,and human–computer interaction. 展开更多
关键词 air permeability carbon nanotubes durability self-powered sensors stretchable thermoelectrics
下载PDF
Nanofiber/nanowires-based flexible and stretchable sensors 被引量:5
11
作者 Dongyi Wang Lili Wang Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2020年第4期66-74,共9页
Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanic... Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanical bending or stretching,outstanding electronic/optoelectronic properties,good transparency,and excellent geometry.Herein,latest summaries in the unique structure and properties of nanofiber/nanowire function materials and their applications for flexible and stretchable sensor are highlighted.Several types of high-performance nanofiber/nanowire-based flexible pressure and stretchable sensors are also reviewed.Finally,a conclusion and prospect for 1D nanofiber/nanowires-based flexible and stretchable sensors are also intensively discussed.This summary offers new insights for the development of flexible and stretchable sensor based 1D nanostructure in next-generation flexible electronics. 展开更多
关键词 FLEXIBLE electronic nanofibers/nanowires ONE-DIMENSION nanostructure FLEXIBLE and stretchable sensor
下载PDF
A strain-isolation design for stretchable electronics 被引量:4
12
作者 Jian Wu Ming Li +6 位作者 Wei-Qiu Chen Dae-Hyeong Kim Yun-Soung Kim Yong-Gang Huang Keh-Chih Hwang Zhan Kang John A.Rogers 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期881-888,共8页
Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they ... Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film. 展开更多
关键词 Strain isolation Thin film SUBSTRATE ADHESIVE stretchable electronics
下载PDF
Water-Resistant and Stretchable Conductive Ionic Hydrogel Fibers Reinforced by Carboxymethyl Cellulose 被引量:2
13
作者 Zhen Wang Mei Wang +1 位作者 Ming-ming Ma Ning Zhang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第5期835-841,I0013,共8页
Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrog... Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices. 展开更多
关键词 stretchable electronic device Conductive hydrogel fiber POLYELECTROLYTE Carboxymethyl cellulose
下载PDF
Strain-Insensitive Hierarchically Structured Stretchable Microstrip Antennas for Robust Wireless Communication 被引量:2
14
作者 Jia Zhu Senhao Zhang +8 位作者 Ning Yi Chaoyun Song Donghai Qiu Zhihui Hu Bowen Li Chenghao Xing Hongbo Yang Qing Wang Huanyu Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期1-12,共12页
As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical def... As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics. 展开更多
关键词 stretchable microstrip antennas Strain-insensitive resonance frequency Wireless communication RF energy harvesting Wearable and bio-integrated electronics
下载PDF
Earth-abundant magnetite with carbon coatings as reversible cathodes for stretchable zinc-ion batteries 被引量:1
15
作者 Zhao Wang Yurou Wang +2 位作者 Guoqi Wang Wei Wu Jian Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期552-562,I0013,共12页
Earth-abundant magnetite(Fe_(3)O_(4))as cathode materials in aqueous zinc-ion batteries(ZIBs)is limited by its very low capacity and poor cycling.Here,a combined strategy based on carbon coating and electrolyte optimi... Earth-abundant magnetite(Fe_(3)O_(4))as cathode materials in aqueous zinc-ion batteries(ZIBs)is limited by its very low capacity and poor cycling.Here,a combined strategy based on carbon coating and electrolyte optimization is adopted to improve the performance of Fe_(3)O_(4).The Zn-Fe_(3)O_(4)@C batteries display specific capacities of 93 mAh g^(−1) and 81%capacity retention after 200 cycles.Such performance is attributed to the enhanced electrical conductivity and structural stability of Fe_(3)O_(4)@C nanocomposites with suppressed iron dissolution.Experimental analysis reveals that the charge storage is contributed by diffusion-limited redox reactions and surface-controlled pseudocapacitance.A stretchable Zn-Fe_(3)O_(4)@C battery is further fabricated,showing stable performance when it is bent or stretched.Fe_(3)O_(4) is a promising cathode material for cost-effective,safe,sustainable and wearable energy supplies. 展开更多
关键词 Zinc-ion batteries stretchable batteries Earth-abundant cathodes MAGNETITE Carbon coatings
下载PDF
Screen-printed soft triboelectric nanogenerator with porous PDMS and stretchable PEDOT:PSS electrode
16
作者 Haochuan Wan Yunqi Cao +3 位作者 Li-Wei Lo Zhihao Xu Nelson Sepulveda Chuan Wang 《Journal of Semiconductors》 EI CAS CSCD 2019年第11期99-105,共7页
The recent development on wearable and stretchable electronics calls for skin conformable power sources that are beyond current battery technologies.Among the many novel energy devices being explored,triboelectric nan... The recent development on wearable and stretchable electronics calls for skin conformable power sources that are beyond current battery technologies.Among the many novel energy devices being explored,triboelectric nanogenerator(TENG)made from intrinsically stretchable materials has a great potential to meet the above requirement as being both soft and efficient.In this paper,we present a lithography-free and low-cost TENG device comprising a porous-structured PDMS layer and a stretchable PEDOT:PSS electrode.The porous PDMS structure is formed by using self-assembled polystyrene beads as the sacrificial template and it is highly ordered with great uniformity and high structural stability under compression force.Moreover,the porous PDMS TENG exhibits improved output voltage and current of 1.65 V and 0.54 nA compared to its counterpart with non-porous PDMS with 0.66 V and 0.34 nA.The effect of different loading force and frequency on the output response of the TENG device has also been studied.This work could shed light on diverse structural modification methods for improving the performance of PDMS-based TENG and the development of intrinsically stretchable TENG for wearable device applications. 展开更多
关键词 triboelectric NANOGENERATOR (TENG) POROUS PDMS stretchable materials WEARABLE ELECTRONICS
下载PDF
Mechanics of nonbuckling interconnects with prestrain for stretchable electronics
17
作者 Zixuan LU Liang GUO Hongyu ZHAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第5期689-702,共14页
The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,cau... The performance of the flexibility and stretchability of flexible electronics depends on the mechanical structure design,for which a great progress has been made in past years.The use of prestrain in the substrate,causing the compression of the transferred interconnects,can provide high elastic stretchability.Recently,the nonbuckling interconnects have been designed,where thick bar replaces thin ribbon layout to yield scissor-like in-plane deformation instead of in-or out-of-plane buckling modes.The nonbuckling interconnect design achieves significantly enhanced stretchability.However,combined use of prestrain and nonbuckling interconnects has not been explored.This paper aims to study the mechanical behavior of nonbuckling interconnects bonded to the prestrained substrate analytically and numerically.It is found that larger prestrain,longer straight segment,and smaller arc radius yield smaller strain in the interconnects.On the other hand,larger prestrain can also cause larger strain in the interconnects after releasing the prestrain.Therefore,the optimization of the prestrain needs to be found to achieve favorable stretchability. 展开更多
关键词 nonbuckling interconnect PRESTRAIN finite deformation stretchability stretchable electronics
下载PDF
Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks
18
作者 T.HAYAT H.NAZAR +1 位作者 M.IMTIAZ A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第12期1663-1678,共16页
This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat ... This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat is being transferred with thermal radiation and the Joule heating. A system of ordinary differential equations is obtained by appropriate transformations. Convergent series solutions are obtained. Effects of various parameters are analyzed for the velocity and temperature. Numerical values of the skin friction coefficient and the Nusselt number are tabulated and examined. It can be seen that the radial velocity is affected in the same manner with both porous and local inertial parameters. A skin friction coefficient depicts the same impact on both disks for both nanofluids with larger stretching parameters. 展开更多
关键词 magnetohydrodynamics (MHD) nanofluid stretchable rotating disk non-Darcy porous medium thermal radiation
下载PDF
N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
19
作者 Lu Yang Chenghao Liu +3 位作者 Yalong Wang Pengcheng Zhu Yao Wang Yuan Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期73-79,共7页
With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility a... With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility and low thermal conductivity,thus hold great prospect in applications as a flexible power generator from dissipated heat.Nevertheless,the weak electrical transport behaviors of organic TE materials have severely impeded their development.Moreover,compared with p-type organic TE materials,stable and high-performance n-type counterparts are more difficult to obtain.Here,we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi;S;@Bi nanorods as fillers,showing a Seebeck coefficient-159.4μV/K at room temperature.Further,a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator(TEG),whose function to output stable voltages responding to temperature differences has been demonstrated.The in situ output performance of the TEG under stretching could withstand up to 75%elongation,and stability test showed little degradation over a one-month period in the air.This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply. 展开更多
关键词 polyaniline-based hybrids thermoelectric properties N-TYPE stretchable electronics
下载PDF
Wavy structures for stretchable energy storage devices:Structural design and implementation
20
作者 闻雷 石颖 +2 位作者 陈静 严彬 李峰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期88-96,共9页
The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretch... The application of wavy structures in stretchable electrochemical energy storage devices is reviewed. First, the mechanical anaJysis of wavy structures, specific to flexible electronics, is introduced. Second, stretchable electrochemical energy storage devices with wavy structures are discussed. Finally, the present problems and challenges are reviewed, and possible directions for future research are outlined. 展开更多
关键词 stretchable devices lithium ion batteries SUPERCAPACITORS wavy structure
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部