Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive fungal diseases of wheat,and seriously threatens safe production of the crop worldwide.In China,new races historically ...Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive fungal diseases of wheat,and seriously threatens safe production of the crop worldwide.In China,new races historically appeared and rapidly developed to be predominant races and have resulted in ineffectiveness and replacement of wheat resistance cultivars as well as massive reduction in yield.In the present study,the relative parasitic fitness of the two newlyemerged Yr5-virulent races(TSA-6 and TSA-9)were compared with those of four currently predominant Chinese races(CYR31,CYR32,CYR33,and CYR34)based on evaluation on 10 Chinese wheat cultivars.As a result,there were significant differences in the relative parasitic fitness parameters among overall tested races based on multiple comparison(LSD)analysis(P<0.05).The principal component analysis(PCA)of overall parasitic fitness parameters indicated that the sporulation ability,infection and spore survivability,expansion capacity,and potential pathogenicity were the most important parasitic fitness attributes of the tested races.Based on the establishment of extracted three principal components and a comprehensive factor score mathematical models,evaluations of the parasitic fitness attributes of tested races showed that the level of relative parasitic fitness of the tested six races was:CYR32(1.15)>TSA-9(0.95)>TSA-6(0.92)>CYR34(0.29)>CYR31(–1.54)>CYR33(–1.77).The results indicated that two Yr5-virulent races TSA-9 and TSA-6 possessed relative parasitic fitness higher than races CYR34,CYR31,and CYR33,but lower than race CYR32,and have potential risks in developing to be predominant races.Therefore,continual monitoring of both Yr5-virulent races,and their variants is needed.The use of wheat cultivars(lines)with Yr5 resistance gene singly in wheat breeding is essential for being avoided,and is suggested to combine with other effective stripe rust resistance genes.展开更多
The gene postulation, cluster analysis and pedigree analysis of 20 wheat cultivars to 28 physiological races of yellow rust (Puccinia striiformis) were conducted under greenhouse conditions, The spectrum of their re...The gene postulation, cluster analysis and pedigree analysis of 20 wheat cultivars to 28 physiological races of yellow rust (Puccinia striiformis) were conducted under greenhouse conditions, The spectrum of their resistance were compared each other. None of the 20 cultivars were resistant to all the test pathogens. The cultivars containing resistance genes Yr5 and Yr24 were not find and genes Yr8, Yrl9 and Yr27 could not be postulated from cultivars tested due to the susceptibility to all isolates used. A total of 6 probale seedling yellow rust resistance genes or gene combinations (Yrl, Yr2, Yr2 + YrHVII, Yr3 + unknown, Yr3 + Yr4, YrAlba) were postulated in the wheat cultivars (Atou, Flanders, Maris Huntsman, Bouquet, Holdfast, Elite Lepeuple, and Vilmorin 27). The gene combination Yr2+YrHVII with the highest frequency (35%) was present in 7 cultivars. The Yr genes present in some wheat cultivars could not be postulated because of non-matching virulence combinations with any of known genes. Cluster result showed that Yr2 and Yr3 are the most important genes in the cultivars. The 13 cultivars are believed to have the pedigree of Noe, which was selected from South Russian wheat. These results will be useful for wheat breeding and provide information about genetic control of wheat yellow rust.展开更多
The incompatible combinations between races of Puccinia striiformis and wheat cultivars with low reaction type resistance were examined by means of fluorescent microscopy, differential interference contrast microscopy...The incompatible combinations between races of Puccinia striiformis and wheat cultivars with low reaction type resistance were examined by means of fluorescent microscopy, differential interference contrast microscopy and electron microscopy. The incompatible combinations consisted of wheat cultivar Niuzhute plus CY28, Hybrid46 plus CY29 and Tianxuan882 plus CY29, while the compatible combination was wheat cultivar Huixianhong plus CY28. The observation revealed a striking difference in the fungal development and the host responses between susceptible and resistant wheat cultivars following infection by the pathogen. The main histological manifestation of the pathogen development in the resistant wheat cultivars include inhibition of hyphal growth, delay of hyphal branching and colony formation, decrease of formation of haustorial mother cells and haustoria, and occurrence of host cell necrosis. The observation by electron microscopy demonstrated that a series of abnormal changes occurred in intercellular hyphae, haustorial mother cells and haustoria during pathogen development in the resistant wheat cultivars. The cytoplasm became more electron-dense and vacuoles in the cytoplasm increased in number and size. The cell walls of hyphae, haustorial mother cells were thickened irregularly. The organelles were disorderly distributed in the cytoplasm and the haustorial mother cells and haustoria lost their physiological function. In the final stage of the pathogen development, the intercellular hyphae, haustorial mother cells and haustoria became necrotic and collapsed. The structural defense reactions such as formation of cell wall apposition, collar and encasement of haustorium were essentially more pronounced in the infected wheat leaves of the resistant cultivars than in the susceptible one. In addition, the relationship between the host resistance expression and the histological and cytological features occurred in the incompatible combination was discussed in this paper.展开更多
Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycni...Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.展开更多
Ultrastructural changes in both pathogen and host cells in the interaction between Puccinia striiformis and wheat cultivar (Libellula) with slow-rusting resistance were observed by transmission electron microscopy. ...Ultrastructural changes in both pathogen and host cells in the interaction between Puccinia striiformis and wheat cultivar (Libellula) with slow-rusting resistance were observed by transmission electron microscopy. Observations revealed marked changes in ultrastructure of both pathogen and host cells. In the pathogen respect, there were many vesicles appeared in the intercellular hyphae and gradually fused into bigger vacuoles, a number of fat drops and electron-dense granules accumulated, mitochondria became swollen and some of them degraded into vesicles, and the plasmalemma of intercellular hyphae became dark. In the haustoria, the cytoplasm degraded gradually and developed a vacuole in the center, fat drops increased, the extrahaustorial matrix widened with a great amount of electron-dense fibrillar and granular materials, and most of the haustoria died with in conjunction with the disappearance of fat drops and other organelles. Structural defense of the host, including formation of cell wall apposition, collar and papilla, occurred in the host respect. Host resistance expression and cytological features occurring in the slow-rusting resistance were discussed.展开更多
Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics ...Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics of wheat resistance to this disease, but few on avirulence of the pathogen due mainly to the nature of obligate biotrophism and the lack of systems for studying its genetics and molecular manipulations. To overcome these limitations, a natural Pst population comprising 352 isolates representative of a diverse virulence spectrum was genotyped using 97 secreted protein-single nucleotide polymorphism (SP-SNP) markers to identify candidate avirulence genes using association analysis. Among avirulence genes corresponding to 19 resistance genes, significantly associated SP-SNP markers were detected for avirulence genes AvYr1, AvYr2, AvYr6, AvYr7, AvYr8, AvYr44, AvYrExp2, AvYrSP, and AvYrTye. These results indicate that association analysis can be used to identify markers for avirulence genes. This study has laid the foundation for developing more SP-SNPs for mapping avirulence genes using segregating populations that can be generated through sexual reproduction on alternate hosts of the pathogen.展开更多
Puccinia striiformis, the causal agent of stripe rust in wheat, barley, and various wild grasses, produces urediniospores and teliospores on these primary or auxiliary hosts. Telial formation, which stops producing in...Puccinia striiformis, the causal agent of stripe rust in wheat, barley, and various wild grasses, produces urediniospores and teliospores on these primary or auxiliary hosts. Telial formation, which stops producing infectious urediniospores, is affected by various host and environmental conditions. However, it is not clear if variation exists among different isolates in the United States. To determine the differences in the pathogen population, 1423 isolates collected in the United States from 2013 to 2016 were tested for telial formation in the seedling stage at a diurnal temperature profile of 4°C - 20°C. The percentages of telial formation varied greatly among the isolates. Of the 1423 isolates, 62.97% produced telia with the percentages of telial formation ranging from 1% to 95% under the test conditions. The formation of telia was significantly affected by the year and the month when the isolates were collected. The epidemiological regions or states, host plants (wheat, barley, and grasses), and races of the isolates did not significantly affect telial formation. However, significant effects on telial formation were observed by interactions between year and region, year and race, month and region and among year, month, and region, as well as between year and month. The results showed that telial formation is a complex trait under the genetic control of the pathogen isolates for adaptation to different environments. Further studies are needed to identify genes involved in the formation of telia and the relationship of telial formation to the survival, aggressiveness, fitness, and evolution of the pathogen.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important wheat disease in China, seriously threatening wheat production. Understanding the winter survival of the fungus is a key for predicting the s...Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important wheat disease in China, seriously threatening wheat production. Understanding the winter survival of the fungus is a key for predicting the spring epidemics of the disease, which determines the crop loss. Estimation of P. striiformis f. sp. tritici winter survival requires processing a large number of samples for sensitive detection of the pathogen in wheat leaf tissue using real-time quantitative reverse transcription PCR (qRT-PCR). A bottleneck for the analysis is the acquisition of a good yield of high quality RNA suitable for qRT-PCR to distinguish dead and alive fungal hyphae inside leaves. Although several methods have been described in the literatures and commercial kits are available for RNA extraction, these methods are mostly too complicated, expensive and inefficient. Thus, we modified three previously reported RNA extraction methods with common and low-cost reagents (LiCI, SDS and NaCI) to solve the problems and selected the best to obtain high quality and quantity RNA for use in qRT-PCR. In the three improved methods, the NaCI method was proven to be the best for extracting RNAfrom urediniospores of and wheat leaves infected by P. striiformis f. sp. tritici, although the modified LiCI and SDS methods also increased yield of RNA compared to the previous methods. The improved NaCI method has the following advantages: 1) Complete transfer of urediniospores of P. striiformis f. sp. tritici from the mortar and pestle can ensure the initial amount of RNA for the qRT-PCR analysis; 2) the use of low-cost NaCI to replace more expensive Trizol can reduce the cost; 3) the yield and quality of RNA can be increased; 4) the improved method is more suitable for a large number and high quantity of samples from fields. Using the improved NaCI method, the amount of RNA was increased three times from urediniospores of P. striiformis f. sp. tritici compared from the extraction kit. Approximately, 10.11 IJg total RNA of high quality was obtained from 100 mg of infected leaves, which was 8.8, 6.5, 3.4 and 2.1 folds of the amounts obtained from the previous LiCI, SDS, NaCI and traditional Trizol methods, respectively. The method could be used to study the overwintering rates of R striiformis f. sp. tritici over a large region of wheat production for predicting epidemic levels by determining pathogen survival levels after winter. The method can alsobe used in any studies which need a large number of high quality RNA samples.展开更多
Fimbrin, a regulator of actin cytoskeletal dynamics that participates in numerous physiological and biochemical processes, controls multiple developmental processes in a variety of tissues and cell types. However, the...Fimbrin, a regulator of actin cytoskeletal dynamics that participates in numerous physiological and biochemical processes, controls multiple developmental processes in a variety of tissues and cell types. However, the role of fimbrin in pathogen defense of wheat and the mechanisms have not been well studied. Here, we investigated that the expression of TaFIM1 gene of wheat was significantly induced in response to avirulent race of Puccinia striiformis f. sp. tritici(Pst) and silencing of TaFIM1 by virus-induced gene silencing method. The results show that silencing of TaFIM1 resulted in a reduction of resistance against the stripe rust indicated by both phenotypes and a histological examination of Pst growth. Additionally, the expression level of Ta FIM1 gene was up-regulated under abiotic stresses. These findings suggest that Ta FIM1 functions as a positive regulator of pathogen resistance of wheat plants and response to abiotic stress. Our work may show new light on understanding the roles of fimbrin in wheat.展开更多
The paper was to study the effects of different cultivation patterns( mix cultivation and monocultivation) of wheat on population structure of Puccinia striiformis West. f. sp. tritici in the fields. Five race-specifi...The paper was to study the effects of different cultivation patterns( mix cultivation and monocultivation) of wheat on population structure of Puccinia striiformis West. f. sp. tritici in the fields. Five race-specific-markers( CY32,CY31,CY29,CY23 and Shuiyuan pathotype) were used to survey 113 infected samples collected from two cultivation patterns. The results indicated that frequency of race-specific-markers under monocultivation was higher than that under mix cultivation; the dominant race-specific-markers were CY32 and CY29 under monocultivation,and the frequency of detection were 81. 5% and 78. 5%,respectively. The dominant race-specific-markers were CY29 and Shuiyuan pathotype under mix cultivation,and the frequency of detection are 41. 7% and 18. 8%,respectively.Several race-specific-markers were detected in single infected leaf,and 41. 7% of infected single leaf were detected with more than two race-specific-markers,58. 3% of infected single leaf were detected with one race-specific-marker under mix cultivation pattern,while there were 75. 0% infected leaves with more than two race-specific-markers and 25. 0% infected single leaf detected with one race-specific-marker under monocultivation pattern. The results indicated that mix cultivation pattern of wheat can reduce races on single leaf,affect the distribution of races in infected leaves,and suppress the occurrence frequency of dominant races of P. striiformis in the fields significantly,subsequently reduced severity and prevalence of the disease.展开更多
Yellow Rust (stripe) rust (Puccinia striiformis West. f. sp. tritici) is one of the most epidemic diseases infect wheat in cold and wet regions. In 1988, this disease caused a loss of seasonal production amounted ...Yellow Rust (stripe) rust (Puccinia striiformis West. f. sp. tritici) is one of the most epidemic diseases infect wheat in cold and wet regions. In 1988, this disease caused a loss of seasonal production amounted 70% on wheat variety Mexipak in Syria, and recurrent infection in 2010, caused by a virulent race called Yr27, caused a considerable loss in the production of bread wheat cultivars (Cham 8, Cham 6 particularly) amounted 90%. Recently, 15 races of yellow rust had been addressed in Syria for seasons 2010-2014; 159E256, 166E254, 166E256, 255 E112, 0 E0, 64 E 6, 230 El50, 0 E 18, 198 El30, 166 El50, 102 El60, 128 E0, 126 El50, 214E150, and 6E16. The race 6E16 was the most frequent during the two seasons, while the race 255El12 was the most virulent, followed by the race 230E222 and the race 0E0 was the weakest one. This study revealed the presence of fourteen newly observed races in Syria. Molecular Variance Analysis of Molecular Variance (AMOVA) of 55 yellow rust Puccinia striiformis f.sp tritici isolates examined by Amplify Fragment Length Polymorphism (AFLP) revealed high genetic variation within population, and the dimensional scale analysis (MSD) and tree diagram showed that the Syrian yellow rust isolates were clustered in three groups: the first group contained isolates derived from durum wheat, the second one contained bread wheat isolates, but the third was made of isolates derived from both durum and bread wheat species.展开更多
The obligate biotrophic fungus Puccinia striiformis f.sp.tritici(Pst)employs virulence effectors to disturb host immunity and causes devastating stripe rust disease.However,our understanding of how Pst effectors regul...The obligate biotrophic fungus Puccinia striiformis f.sp.tritici(Pst)employs virulence effectors to disturb host immunity and causes devastating stripe rust disease.However,our understanding of how Pst effectors regulate host defense responses remains limited.In this study,we determined that the Pst effector Hasp98,which is highly expressed in Pst haustoria,inhibits plant immune responses triggered by flg22or nonpathogenic bacteria.Overexpression of Hasp98 in wheat(Triticum aestivum)suppressed avirulent Pst-triggered immunity,leading to decreased H2O2accumulation and promoting P.striiformis infection,whereas stable silencing of Hasp98 impaired P.striiformis pathogenicity.Hasp98 interacts with the wheat mitogenactivated protein kinase TaMAPK4,a positive regulator of plant resistance to stripe rust.The conserved TEY motif of TaMAPK4 is important for its kinase activity,which is required for the resistance function.We demonstrate that Hasp98inhibits the kinase activity of TaMAPK4 and that the stable silencing of TaMAPK4 compromises wheat resistance against P.striiformis.These results suggest that Hasp98 acts as a virulence effector to interfere with the MAPK signaling pathway in wheat,thereby promoting P.striiformis infection.展开更多
The devastating wheat stripe(yellow)rust pathogen,Puccinia striiformis f.sp.tritici(Pst),is a macrocyclic and heteroe-cious fungus.Pst produces urediniospores and teliospores on its primary host,wheat,and pycniospores...The devastating wheat stripe(yellow)rust pathogen,Puccinia striiformis f.sp.tritici(Pst),is a macrocyclic and heteroe-cious fungus.Pst produces urediniospores and teliospores on its primary host,wheat,and pycniospores and aeciospores are produced on its alternate hosts,barberry(Berberis spp.)or mahonia(Mahonia spp.).Basidiospores are developed from teliospores and infect alternate hosts.These five spore forms play distinct roles in Pst infection,disease development,and fungal survival,etc.However,the specific genes and mechanisms underlying these functional differences are largely unknown.In this study,we performed,for the first time in rust fungi,the deep RNA sequencing to examine the transcriptomic shift among all five Pst spore forms.Among a total of 29,591 identified transcripts,951 were specifically expressed in basidiospores,whereas 920,761,266,and 110 were specific for teliospores,pycniospores,aeciospores,and urediniospores,respectively.Additionally,transcriptomes of sexual spores,namely pycniospores and basidiospores,showed significant differences from those of asexual spores(urediniospores,teliospores,and aeciospores),and transcriptomes of urediniospores and aeciospores were more similar to each other than to the three other spore forms.Especially,the basidiospores and pycniospores which infected the berberis shows wide differences in the cell wall degrading-enzymes and mating and pheromone response genes.Besides,we also found that there are 6234 differential expressed genes between the urediniospores and pycniospores,while only have 3 genes have alternative splicing enents,suggesting that differential genes expression may make more contribution than AS.This comprehensive transcriptome profiling can substantially improve our understanding of the developmental biology of the wheat stripe rust fungus.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations...Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding.展开更多
Wheat stripe rust caused by Puccinia striiformis f.sp.tritici(Pst)poses a great threat to wheat production worldwide.The rapid change in virulence of Pst leads to a loss of resistance in currently resistant wheat cult...Wheat stripe rust caused by Puccinia striiformis f.sp.tritici(Pst)poses a great threat to wheat production worldwide.The rapid change in virulence of Pst leads to a loss of resistance in currently resistant wheat cultivars,which results in frequent disease epidemics.Therefore,a major focus is currently placed on investigating the molecular mechanisms underlying this rapid variation of pathogenicity and coevolving wheat resistance.Limited by the lack of a system for stable transformation of Pst and the difficulties in wheat transformation,it is not easy to generate deeper insights into the wheat-Pst interaction using established genetic methods.Nevertheless,considerable effort has been made to unravel the wheat-Pst interaction and significant progress is being made.Histology and cytology have revealed basic details of infection strategies and defense responses during wheat-Pst interactions,identified cellular components involved in wheat-Pst interactions,and have helped to elucidate their role in the infection process or in plant defense responses.Transcriptome and genome sequencing has revealed the molecular features and dynamics of the wheat-Pst pathosystem.Extensive molecular analyses have led to the identification of major components in the wheat resistance response and in Pst virulence.Studies of wheat-Pst interactions have now entered a new phase in which cellular and molecular approaches are being used.This review focuses on the cellular biology of wheat-Pst interactions and integrates the emerging data from molecular analyses with the histocytological observations.展开更多
Plants can produce reactive oxygen species(ROS)to counteract pathogen invasion,and pathogens have also evolved corresponding ROS scavenging strategies to promote infection and pathogenicity.Catalases(CATs)have been fo...Plants can produce reactive oxygen species(ROS)to counteract pathogen invasion,and pathogens have also evolved corresponding ROS scavenging strategies to promote infection and pathogenicity.Catalases(CATs)have been found to play pivotal roles in detoxifying H_(2)O_(2)formed by superoxide anion catalyzed by superoxide dismutases(SODs).However,few studies have addressed H_(2)O_(2)removing during rust fungi infection of wheat.In this study,we cloned a CAT gene PsCAT1 from Puccinia striiformis f.sp.tritici(Pst),which encodes a monofunctional heme-containing catalase.PsCAT1 exhibited a high degree of tolerance to pH and temperature,and forms high homopolymers.Heterologous complementation assays in Saccharomyces cerevisiae reveal that the signal peptide of PsCAT1 is functional.Overexpression of PsCAT1 enhanced S.cerevisiae resistance to H_(2)O_(2).Transient expression of PsCAT1 in Nicotiana benthamiana suppressed Bax-induced cell death.Knockdown of PsCAT1 using a host-induced gene silencing(HIGS)system led to the reduced virulence of Pst,which was correlated to H_(2)O_(2)accumulation in HIGS plants.These results indicate that PsCAT1 acts as an important pathogenicity factor that facilitates Pst infection by scavenging host-derived H_(2)O_(2).展开更多
Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat worldwide and resistant cultivars are vital for its management. Therefore, investigating the heterozygos...Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat worldwide and resistant cultivars are vital for its management. Therefore, investigating the heterozygosity of the pathogen is important because of rapid virulence changes in isolates heterozygous for avirulence/virulence.An isolate of P. striiformis f. sp. tritici was selfed on Berberis shensiana to determine the heterozygosity for avirulence/virulence loci. One hundred and twenty progeny isolates obtained from this selfing were phenotyped using 25 lines of wheat containing Yrgenes and genotyped with 96 simple sequencing repeat markers, with51 pathotypes and 55 multi-locus genotypes being identified. All of these were avirulent on lines with Yr5,Yr10, Yr15, Yr24 and Yr26 and virulent on lines with Yr17,Yr25 and YrA, indicating that the parental isolate was homozygously avirulent or homozygously virulent for these loci. Segregation was found for wheat lines with Yr1,Yr2, Yr4, Yr6, Yr7, Yr8, Yr9, Yr27, Yr28, Yr32, Yr43, Yr44,YrExp2, YrSp, YrTr1, YrTye and YrV23. The 17 cultivars to which the Pst was identified as heterozygous with respect to virulence/avirulence should not be given priority in breeding programs to obtain new resistant cultivars.展开更多
Over the past decades Puccinia striiformis f.sp.tritici(Pst)has developed into one of the most,if not the most important fungal pathogen in wheat production worldwide.In China,Pst has caused numerous epidemics with ...Over the past decades Puccinia striiformis f.sp.tritici(Pst)has developed into one of the most,if not the most important fungal pathogen in wheat production worldwide.In China,Pst has caused numerous epidemics with partially devastating yield losses[1].The occurrence of the'warrior'race in Europe in 2011 also caused significant problems[2].Pst,like other obligate biotrophs,is characterized by a high degree of genetic variability,especially with respect展开更多
Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by ...Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by Puccinia striiformis f.sp.tritici(Pst).Expression of TaBln4 increased in host plants at the early stage of infection with a virulent Pst race(CYR31)but was unchanged in response to infection by an avirulent race(CYR23).Transcription levels of TaBln4 were also regulated by hormone and abiotic stresses.Expression of TaBln4 in tobacco leaves suppressed Bax-induced programmed cell death.Knockdown of TaBln4 by virus-induced gene silencing inhibited colonization of race CYR31 by increasing the accumulation of H2O2 and formation of hypersensitive responses(HR).Transient overexpression of TaBln4 by a transient overexpression system(BSMV-VOX)increased the susceptibility of wheat to CYR31.Results from bimolecular fluorescence complementation and pull-down assays demonstrated that TaBLN4 interacted with calmodulin.Taken together,our results suggest that TaBln4 negatively regulates resistance in wheat to Pst in a reactive oxygen species(ROS)-and HR-dependent manner.展开更多
基金supported by the National Natural Science Foundation of China(32072358 and 32272507)the National Key R&D Program of China(2021YFD1401000)+1 种基金the earmarked fund for CARS-03,the Natural Science Basic Research Project in Shaanxi Province of China(2020JZ-15)National“111 Project”of China(BP0719026)。
文摘Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive fungal diseases of wheat,and seriously threatens safe production of the crop worldwide.In China,new races historically appeared and rapidly developed to be predominant races and have resulted in ineffectiveness and replacement of wheat resistance cultivars as well as massive reduction in yield.In the present study,the relative parasitic fitness of the two newlyemerged Yr5-virulent races(TSA-6 and TSA-9)were compared with those of four currently predominant Chinese races(CYR31,CYR32,CYR33,and CYR34)based on evaluation on 10 Chinese wheat cultivars.As a result,there were significant differences in the relative parasitic fitness parameters among overall tested races based on multiple comparison(LSD)analysis(P<0.05).The principal component analysis(PCA)of overall parasitic fitness parameters indicated that the sporulation ability,infection and spore survivability,expansion capacity,and potential pathogenicity were the most important parasitic fitness attributes of the tested races.Based on the establishment of extracted three principal components and a comprehensive factor score mathematical models,evaluations of the parasitic fitness attributes of tested races showed that the level of relative parasitic fitness of the tested six races was:CYR32(1.15)>TSA-9(0.95)>TSA-6(0.92)>CYR34(0.29)>CYR31(–1.54)>CYR33(–1.77).The results indicated that two Yr5-virulent races TSA-9 and TSA-6 possessed relative parasitic fitness higher than races CYR34,CYR31,and CYR33,but lower than race CYR32,and have potential risks in developing to be predominant races.Therefore,continual monitoring of both Yr5-virulent races,and their variants is needed.The use of wheat cultivars(lines)with Yr5 resistance gene singly in wheat breeding is essential for being avoided,and is suggested to combine with other effective stripe rust resistance genes.
基金supported by the project from the National Basic Research Program of China (2006CB100200)China Postdoctoral Science Foundation (20080430052)+1 种基金the National Natural Science Foundation of China(30471131)the National Key Technology R&D Program of China(2006BAD08A05,2006BAD02A16)
文摘The gene postulation, cluster analysis and pedigree analysis of 20 wheat cultivars to 28 physiological races of yellow rust (Puccinia striiformis) were conducted under greenhouse conditions, The spectrum of their resistance were compared each other. None of the 20 cultivars were resistant to all the test pathogens. The cultivars containing resistance genes Yr5 and Yr24 were not find and genes Yr8, Yrl9 and Yr27 could not be postulated from cultivars tested due to the susceptibility to all isolates used. A total of 6 probale seedling yellow rust resistance genes or gene combinations (Yrl, Yr2, Yr2 + YrHVII, Yr3 + unknown, Yr3 + Yr4, YrAlba) were postulated in the wheat cultivars (Atou, Flanders, Maris Huntsman, Bouquet, Holdfast, Elite Lepeuple, and Vilmorin 27). The gene combination Yr2+YrHVII with the highest frequency (35%) was present in 7 cultivars. The Yr genes present in some wheat cultivars could not be postulated because of non-matching virulence combinations with any of known genes. Cluster result showed that Yr2 and Yr3 are the most important genes in the cultivars. The 13 cultivars are believed to have the pedigree of Noe, which was selected from South Russian wheat. These results will be useful for wheat breeding and provide information about genetic control of wheat yellow rust.
基金supported by National Natural Science Foundation of China(30070496,30125031)Research Program of Shaanxi Province(2001K02-G4).
文摘The incompatible combinations between races of Puccinia striiformis and wheat cultivars with low reaction type resistance were examined by means of fluorescent microscopy, differential interference contrast microscopy and electron microscopy. The incompatible combinations consisted of wheat cultivar Niuzhute plus CY28, Hybrid46 plus CY29 and Tianxuan882 plus CY29, while the compatible combination was wheat cultivar Huixianhong plus CY28. The observation revealed a striking difference in the fungal development and the host responses between susceptible and resistant wheat cultivars following infection by the pathogen. The main histological manifestation of the pathogen development in the resistant wheat cultivars include inhibition of hyphal growth, delay of hyphal branching and colony formation, decrease of formation of haustorial mother cells and haustoria, and occurrence of host cell necrosis. The observation by electron microscopy demonstrated that a series of abnormal changes occurred in intercellular hyphae, haustorial mother cells and haustoria during pathogen development in the resistant wheat cultivars. The cytoplasm became more electron-dense and vacuoles in the cytoplasm increased in number and size. The cell walls of hyphae, haustorial mother cells were thickened irregularly. The organelles were disorderly distributed in the cytoplasm and the haustorial mother cells and haustoria lost their physiological function. In the final stage of the pathogen development, the intercellular hyphae, haustorial mother cells and haustoria became necrotic and collapsed. The structural defense reactions such as formation of cell wall apposition, collar and encasement of haustorium were essentially more pronounced in the infected wheat leaves of the resistant cultivars than in the susceptible one. In addition, the relationship between the host resistance expression and the histological and cytological features occurred in the incompatible combination was discussed in this paper.
基金the National Key R&D Program of China(2018YFD0200500)the National Natural Science Foundation of China(31960524,31071641 and 32072358)+1 种基金the Fundamental Research Funds for the Central Universities(2452019046)the Natural Science Basic Research Plan in Shaanxi Province of China(2020JZ-15,2017JM3006)。
文摘Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.
基金supported by Provincial Key Scientific and Technological Project of Guizhou,China ([2007] 5003)Guizhou Province Scientific and Technological Research,China ([2007] 2051)
文摘Ultrastructural changes in both pathogen and host cells in the interaction between Puccinia striiformis and wheat cultivar (Libellula) with slow-rusting resistance were observed by transmission electron microscopy. Observations revealed marked changes in ultrastructure of both pathogen and host cells. In the pathogen respect, there were many vesicles appeared in the intercellular hyphae and gradually fused into bigger vacuoles, a number of fat drops and electron-dense granules accumulated, mitochondria became swollen and some of them degraded into vesicles, and the plasmalemma of intercellular hyphae became dark. In the haustoria, the cytoplasm degraded gradually and developed a vacuole in the center, fat drops increased, the extrahaustorial matrix widened with a great amount of electron-dense fibrillar and granular materials, and most of the haustoria died with in conjunction with the disappearance of fat drops and other organelles. Structural defense of the host, including formation of cell wall apposition, collar and papilla, occurred in the host respect. Host resistance expression and cytological features occurring in the slow-rusting resistance were discussed.
文摘Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics of wheat resistance to this disease, but few on avirulence of the pathogen due mainly to the nature of obligate biotrophism and the lack of systems for studying its genetics and molecular manipulations. To overcome these limitations, a natural Pst population comprising 352 isolates representative of a diverse virulence spectrum was genotyped using 97 secreted protein-single nucleotide polymorphism (SP-SNP) markers to identify candidate avirulence genes using association analysis. Among avirulence genes corresponding to 19 resistance genes, significantly associated SP-SNP markers were detected for avirulence genes AvYr1, AvYr2, AvYr6, AvYr7, AvYr8, AvYr44, AvYrExp2, AvYrSP, and AvYrTye. These results indicate that association analysis can be used to identify markers for avirulence genes. This study has laid the foundation for developing more SP-SNPs for mapping avirulence genes using segregating populations that can be generated through sexual reproduction on alternate hosts of the pathogen.
文摘Puccinia striiformis, the causal agent of stripe rust in wheat, barley, and various wild grasses, produces urediniospores and teliospores on these primary or auxiliary hosts. Telial formation, which stops producing infectious urediniospores, is affected by various host and environmental conditions. However, it is not clear if variation exists among different isolates in the United States. To determine the differences in the pathogen population, 1423 isolates collected in the United States from 2013 to 2016 were tested for telial formation in the seedling stage at a diurnal temperature profile of 4°C - 20°C. The percentages of telial formation varied greatly among the isolates. Of the 1423 isolates, 62.97% produced telia with the percentages of telial formation ranging from 1% to 95% under the test conditions. The formation of telia was significantly affected by the year and the month when the isolates were collected. The epidemiological regions or states, host plants (wheat, barley, and grasses), and races of the isolates did not significantly affect telial formation. However, significant effects on telial formation were observed by interactions between year and region, year and race, month and region and among year, month, and region, as well as between year and month. The results showed that telial formation is a complex trait under the genetic control of the pathogen isolates for adaptation to different environments. Further studies are needed to identify genes involved in the formation of telia and the relationship of telial formation to the survival, aggressiveness, fitness, and evolution of the pathogen.
基金supported by the National Key Basic Research Program of China (2013CB127700)the Na-tional Natural Science Foundation of China (31071640 and 31271985)partially supported by the 111 Project from Education Ministry of China (B07049)
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important wheat disease in China, seriously threatening wheat production. Understanding the winter survival of the fungus is a key for predicting the spring epidemics of the disease, which determines the crop loss. Estimation of P. striiformis f. sp. tritici winter survival requires processing a large number of samples for sensitive detection of the pathogen in wheat leaf tissue using real-time quantitative reverse transcription PCR (qRT-PCR). A bottleneck for the analysis is the acquisition of a good yield of high quality RNA suitable for qRT-PCR to distinguish dead and alive fungal hyphae inside leaves. Although several methods have been described in the literatures and commercial kits are available for RNA extraction, these methods are mostly too complicated, expensive and inefficient. Thus, we modified three previously reported RNA extraction methods with common and low-cost reagents (LiCI, SDS and NaCI) to solve the problems and selected the best to obtain high quality and quantity RNA for use in qRT-PCR. In the three improved methods, the NaCI method was proven to be the best for extracting RNAfrom urediniospores of and wheat leaves infected by P. striiformis f. sp. tritici, although the modified LiCI and SDS methods also increased yield of RNA compared to the previous methods. The improved NaCI method has the following advantages: 1) Complete transfer of urediniospores of P. striiformis f. sp. tritici from the mortar and pestle can ensure the initial amount of RNA for the qRT-PCR analysis; 2) the use of low-cost NaCI to replace more expensive Trizol can reduce the cost; 3) the yield and quality of RNA can be increased; 4) the improved method is more suitable for a large number and high quantity of samples from fields. Using the improved NaCI method, the amount of RNA was increased three times from urediniospores of P. striiformis f. sp. tritici compared from the extraction kit. Approximately, 10.11 IJg total RNA of high quality was obtained from 100 mg of infected leaves, which was 8.8, 6.5, 3.4 and 2.1 folds of the amounts obtained from the previous LiCI, SDS, NaCI and traditional Trizol methods, respectively. The method could be used to study the overwintering rates of R striiformis f. sp. tritici over a large region of wheat production for predicting epidemic levels by determining pathogen survival levels after winter. The method can alsobe used in any studies which need a large number of high quality RNA samples.
基金supported by the National Natural Science Foundation of China (31571960)the NSFC-Xinjiang Joint Fund, China (U1903110)the 111 Project from the Ministry of Education of China (B07049)。
文摘Fimbrin, a regulator of actin cytoskeletal dynamics that participates in numerous physiological and biochemical processes, controls multiple developmental processes in a variety of tissues and cell types. However, the role of fimbrin in pathogen defense of wheat and the mechanisms have not been well studied. Here, we investigated that the expression of TaFIM1 gene of wheat was significantly induced in response to avirulent race of Puccinia striiformis f. sp. tritici(Pst) and silencing of TaFIM1 by virus-induced gene silencing method. The results show that silencing of TaFIM1 resulted in a reduction of resistance against the stripe rust indicated by both phenotypes and a histological examination of Pst growth. Additionally, the expression level of Ta FIM1 gene was up-regulated under abiotic stresses. These findings suggest that Ta FIM1 functions as a positive regulator of pathogen resistance of wheat plants and response to abiotic stress. Our work may show new light on understanding the roles of fimbrin in wheat.
基金Supported by National 973 Project(2013CB127705)Special Fund of Ministry of Agriculture for Wheat Stripe Rust Industry(200903035-7)Key Fund of Yunnan Province of China(2009CC004)
文摘The paper was to study the effects of different cultivation patterns( mix cultivation and monocultivation) of wheat on population structure of Puccinia striiformis West. f. sp. tritici in the fields. Five race-specific-markers( CY32,CY31,CY29,CY23 and Shuiyuan pathotype) were used to survey 113 infected samples collected from two cultivation patterns. The results indicated that frequency of race-specific-markers under monocultivation was higher than that under mix cultivation; the dominant race-specific-markers were CY32 and CY29 under monocultivation,and the frequency of detection were 81. 5% and 78. 5%,respectively. The dominant race-specific-markers were CY29 and Shuiyuan pathotype under mix cultivation,and the frequency of detection are 41. 7% and 18. 8%,respectively.Several race-specific-markers were detected in single infected leaf,and 41. 7% of infected single leaf were detected with more than two race-specific-markers,58. 3% of infected single leaf were detected with one race-specific-marker under mix cultivation pattern,while there were 75. 0% infected leaves with more than two race-specific-markers and 25. 0% infected single leaf detected with one race-specific-marker under monocultivation pattern. The results indicated that mix cultivation pattern of wheat can reduce races on single leaf,affect the distribution of races in infected leaves,and suppress the occurrence frequency of dominant races of P. striiformis in the fields significantly,subsequently reduced severity and prevalence of the disease.
文摘Yellow Rust (stripe) rust (Puccinia striiformis West. f. sp. tritici) is one of the most epidemic diseases infect wheat in cold and wet regions. In 1988, this disease caused a loss of seasonal production amounted 70% on wheat variety Mexipak in Syria, and recurrent infection in 2010, caused by a virulent race called Yr27, caused a considerable loss in the production of bread wheat cultivars (Cham 8, Cham 6 particularly) amounted 90%. Recently, 15 races of yellow rust had been addressed in Syria for seasons 2010-2014; 159E256, 166E254, 166E256, 255 E112, 0 E0, 64 E 6, 230 El50, 0 E 18, 198 El30, 166 El50, 102 El60, 128 E0, 126 El50, 214E150, and 6E16. The race 6E16 was the most frequent during the two seasons, while the race 255El12 was the most virulent, followed by the race 230E222 and the race 0E0 was the weakest one. This study revealed the presence of fourteen newly observed races in Syria. Molecular Variance Analysis of Molecular Variance (AMOVA) of 55 yellow rust Puccinia striiformis f.sp tritici isolates examined by Amplify Fragment Length Polymorphism (AFLP) revealed high genetic variation within population, and the dimensional scale analysis (MSD) and tree diagram showed that the Syrian yellow rust isolates were clustered in three groups: the first group contained isolates derived from durum wheat, the second one contained bread wheat isolates, but the third was made of isolates derived from both durum and bread wheat species.
基金supported by the National Key R&D Program of China (2021YFD1401000)the National Natural Science Foundation of China (Grants 32161143023,31972352)+3 种基金Shaanxi Innovation Team Project (Grant 2018TD004)International Science and Technology Cooperation Project of Shaanxi provincial key R&D plan–key project (2020KWZ-009)the Central Human Resource Department“Ten-thousand Program,”the 111 Project from the Ministry of Education of China (BP0719026)。
文摘The obligate biotrophic fungus Puccinia striiformis f.sp.tritici(Pst)employs virulence effectors to disturb host immunity and causes devastating stripe rust disease.However,our understanding of how Pst effectors regulate host defense responses remains limited.In this study,we determined that the Pst effector Hasp98,which is highly expressed in Pst haustoria,inhibits plant immune responses triggered by flg22or nonpathogenic bacteria.Overexpression of Hasp98 in wheat(Triticum aestivum)suppressed avirulent Pst-triggered immunity,leading to decreased H2O2accumulation and promoting P.striiformis infection,whereas stable silencing of Hasp98 impaired P.striiformis pathogenicity.Hasp98 interacts with the wheat mitogenactivated protein kinase TaMAPK4,a positive regulator of plant resistance to stripe rust.The conserved TEY motif of TaMAPK4 is important for its kinase activity,which is required for the resistance function.We demonstrate that Hasp98inhibits the kinase activity of TaMAPK4 and that the stable silencing of TaMAPK4 compromises wheat resistance against P.striiformis.These results suggest that Hasp98 acts as a virulence effector to interfere with the MAPK signaling pathway in wheat,thereby promoting P.striiformis infection.
基金financially supported by the National Key Research and Development Program of China(2021YFD1401000)the National Natural Science Foundation of China(32172380 and 32102175)+1 种基金the 111 Project of the Ministry of Education of China(B0719026)the Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas(CSBAAKF2021013).
文摘The devastating wheat stripe(yellow)rust pathogen,Puccinia striiformis f.sp.tritici(Pst),is a macrocyclic and heteroe-cious fungus.Pst produces urediniospores and teliospores on its primary host,wheat,and pycniospores and aeciospores are produced on its alternate hosts,barberry(Berberis spp.)or mahonia(Mahonia spp.).Basidiospores are developed from teliospores and infect alternate hosts.These five spore forms play distinct roles in Pst infection,disease development,and fungal survival,etc.However,the specific genes and mechanisms underlying these functional differences are largely unknown.In this study,we performed,for the first time in rust fungi,the deep RNA sequencing to examine the transcriptomic shift among all five Pst spore forms.Among a total of 29,591 identified transcripts,951 were specifically expressed in basidiospores,whereas 920,761,266,and 110 were specific for teliospores,pycniospores,aeciospores,and urediniospores,respectively.Additionally,transcriptomes of sexual spores,namely pycniospores and basidiospores,showed significant differences from those of asexual spores(urediniospores,teliospores,and aeciospores),and transcriptomes of urediniospores and aeciospores were more similar to each other than to the three other spore forms.Especially,the basidiospores and pycniospores which infected the berberis shows wide differences in the cell wall degrading-enzymes and mating and pheromone response genes.Besides,we also found that there are 6234 differential expressed genes between the urediniospores and pycniospores,while only have 3 genes have alternative splicing enents,suggesting that differential genes expression may make more contribution than AS.This comprehensive transcriptome profiling can substantially improve our understanding of the developmental biology of the wheat stripe rust fungus.
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金financially supported by the National Key Research and Development Program of China (2022YFD1200900 and 2022YFD1200904)the Agricultural Science and Technology Innovation Program+1 种基金Fundamental Research Funds for Central NonProfit of Institute of Crop Sciences, CAASShijiazhuang S&T Project (232490022A and 232490432A)
文摘Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding.
基金the National Basic Research Program of China(2013CB127700)the National Natural Science Foundation of China(31401693)the China Postdoctoral Science Foundation(2014M550514).
文摘Wheat stripe rust caused by Puccinia striiformis f.sp.tritici(Pst)poses a great threat to wheat production worldwide.The rapid change in virulence of Pst leads to a loss of resistance in currently resistant wheat cultivars,which results in frequent disease epidemics.Therefore,a major focus is currently placed on investigating the molecular mechanisms underlying this rapid variation of pathogenicity and coevolving wheat resistance.Limited by the lack of a system for stable transformation of Pst and the difficulties in wheat transformation,it is not easy to generate deeper insights into the wheat-Pst interaction using established genetic methods.Nevertheless,considerable effort has been made to unravel the wheat-Pst interaction and significant progress is being made.Histology and cytology have revealed basic details of infection strategies and defense responses during wheat-Pst interactions,identified cellular components involved in wheat-Pst interactions,and have helped to elucidate their role in the infection process or in plant defense responses.Transcriptome and genome sequencing has revealed the molecular features and dynamics of the wheat-Pst pathosystem.Extensive molecular analyses have led to the identification of major components in the wheat resistance response and in Pst virulence.Studies of wheat-Pst interactions have now entered a new phase in which cellular and molecular approaches are being used.This review focuses on the cellular biology of wheat-Pst interactions and integrates the emerging data from molecular analyses with the histocytological observations.
基金supported by the National Natural Science Foundation of China(31620103913 and U2003118)Natural Science Basic Research Plan in Shaanxi Province of China(2020JZ-12),National“111 plan”(BP0719026)and Shaanxi Innovation Team Project(2018TD-004).
文摘Plants can produce reactive oxygen species(ROS)to counteract pathogen invasion,and pathogens have also evolved corresponding ROS scavenging strategies to promote infection and pathogenicity.Catalases(CATs)have been found to play pivotal roles in detoxifying H_(2)O_(2)formed by superoxide anion catalyzed by superoxide dismutases(SODs).However,few studies have addressed H_(2)O_(2)removing during rust fungi infection of wheat.In this study,we cloned a CAT gene PsCAT1 from Puccinia striiformis f.sp.tritici(Pst),which encodes a monofunctional heme-containing catalase.PsCAT1 exhibited a high degree of tolerance to pH and temperature,and forms high homopolymers.Heterologous complementation assays in Saccharomyces cerevisiae reveal that the signal peptide of PsCAT1 is functional.Overexpression of PsCAT1 enhanced S.cerevisiae resistance to H_(2)O_(2).Transient expression of PsCAT1 in Nicotiana benthamiana suppressed Bax-induced cell death.Knockdown of PsCAT1 using a host-induced gene silencing(HIGS)system led to the reduced virulence of Pst,which was correlated to H_(2)O_(2)accumulation in HIGS plants.These results indicate that PsCAT1 acts as an important pathogenicity factor that facilitates Pst infection by scavenging host-derived H_(2)O_(2).
基金supported by the National Key Basic Research Program of China (2013CB127700)the National Natural Science Foundation of China (31271986, 31371882)+1 种基金Modern Agro-industry Technology Research System in China (CARS-3-1-11)the 111 Project of the Ministry of Education of China (B07049)
文摘Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat worldwide and resistant cultivars are vital for its management. Therefore, investigating the heterozygosity of the pathogen is important because of rapid virulence changes in isolates heterozygous for avirulence/virulence.An isolate of P. striiformis f. sp. tritici was selfed on Berberis shensiana to determine the heterozygosity for avirulence/virulence loci. One hundred and twenty progeny isolates obtained from this selfing were phenotyped using 25 lines of wheat containing Yrgenes and genotyped with 96 simple sequencing repeat markers, with51 pathotypes and 55 multi-locus genotypes being identified. All of these were avirulent on lines with Yr5,Yr10, Yr15, Yr24 and Yr26 and virulent on lines with Yr17,Yr25 and YrA, indicating that the parental isolate was homozygously avirulent or homozygously virulent for these loci. Segregation was found for wheat lines with Yr1,Yr2, Yr4, Yr6, Yr7, Yr8, Yr9, Yr27, Yr28, Yr32, Yr43, Yr44,YrExp2, YrSp, YrTr1, YrTye and YrV23. The 17 cultivars to which the Pst was identified as heterozygous with respect to virulence/avirulence should not be given priority in breeding programs to obtain new resistant cultivars.
文摘Over the past decades Puccinia striiformis f.sp.tritici(Pst)has developed into one of the most,if not the most important fungal pathogen in wheat production worldwide.In China,Pst has caused numerous epidemics with partially devastating yield losses[1].The occurrence of the'warrior'race in Europe in 2011 also caused significant problems[2].Pst,like other obligate biotrophs,is characterized by a high degree of genetic variability,especially with respect
基金supported by the National Key Research and Development Program of China(2021YFD1401000)the International Science and Technology Cooperation Project of Shaanxi Provincial Key R&D Plan-Key Project(2020KWZ-009)+1 种基金the Shaanxi Innovation Team Project(2018TD-004)the 111 Project of the Ministry of Education of China(B07049).
文摘Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by Puccinia striiformis f.sp.tritici(Pst).Expression of TaBln4 increased in host plants at the early stage of infection with a virulent Pst race(CYR31)but was unchanged in response to infection by an avirulent race(CYR23).Transcription levels of TaBln4 were also regulated by hormone and abiotic stresses.Expression of TaBln4 in tobacco leaves suppressed Bax-induced programmed cell death.Knockdown of TaBln4 by virus-induced gene silencing inhibited colonization of race CYR31 by increasing the accumulation of H2O2 and formation of hypersensitive responses(HR).Transient overexpression of TaBln4 by a transient overexpression system(BSMV-VOX)increased the susceptibility of wheat to CYR31.Results from bimolecular fluorescence complementation and pull-down assays demonstrated that TaBLN4 interacted with calmodulin.Taken together,our results suggest that TaBln4 negatively regulates resistance in wheat to Pst in a reactive oxygen species(ROS)-and HR-dependent manner.