The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
The West Junggar region of western China,located in the far eastern end of the Kazakhstan orocline,occupies the junction of the Siberia,Tarim and Kazakhstan blocks,which is crucial for palinspastic reconstruction of t...The West Junggar region of western China,located in the far eastern end of the Kazakhstan orocline,occupies the junction of the Siberia,Tarim and Kazakhstan blocks,which is crucial for palinspastic reconstruction of the CAOB.The principal rock assemblages in West Junggar include Paleozoic ophiolitic mélanges and a thick,undeformed Upper Devonian–Lower Carboniferous sedimentary succession as the boundary of the mélanges,both of which are intruded by sub-circular Upper Carboniferous granitoid plutons and intermediate-basic-mafic dykes.On the basis of the sedimentary structures like cross bedding and convolute bedding and the geochronology data,the Upper Devonian–Lower Carboniferous sedimentary successions were identified as the Tailegula,Baogutu,and Xibeikulasi formations from the bottom up,which is an apparent shallowing-upwards ocean basin fill succession,from radiolarian cherts through 2000 meters of flysch to a more neritic Baogutu Formation to a fluvial Xibeikulasi Formation.At the bottom of the Tailegula Formation there is a peperite-bearing unit:a succession of extrusive mafic rock,mainly basaltic lava,with interbeds or blocks of sedimentary rocks including carbonate,radiolarian chert,calcareous siltstone and minor fine-grained tuffaceous sandstone.Peperites in the Tailegula are thickest and best developed as the type section.Four types of peperites were identified based on of the volcanic clast shapes and sediment-matrix properties in Tailegula:(1)arbonatesediment-hosted fluidal peperites,(2)sandstone-hosted fluidal peperites,(3)tuff-hosted mixed fluidal and blocky peperites and(4)carbonate-sediment-hosted blocky peperites.Zircon LA-ICP-MS U-Pb dating of a tuff lens enclosed by lava showed that the peperites formed in the Late Devonian(ca.364 Ma).The widespread peperitebearing succession in the Tailegula Formation is of variablethickness at different sites in West Junggar,such as the Tailegula,Baijiantan,Kalaxiuka,Saertuohai,Dagun,west of the Akebastaw granite and Shinaizha areas.The peperite-bearing unit is generally undeformed in contrast to the highly deformed slices of ophiolite,and is continuously distributed as a stratigraphic section regionally on either side of the Darbut and Baijiantan ophiolitic belts.It can be taken as a mark layer to demonstrate the existence of a shallow remnant ocean basin from the end of Devonian in West Junggar,which is an important component of oceanic crust in the remnant ocean basin.Peperite,underlying Devonian or earlier oceanic crust developed in the spreading process of the ocean basin,and overlying Carboniferous remnant ocean basin-fill succession constitute the complete evolution sequence of the remnant ocean basin.The Darbut and Baijiantan ophiolitic belts should not be interpreted as significant plate boundaries and represent the underlying ocean crust uplifted along tectonic lineaments within a continuous shallow remnant ocean basin.The Baijiantan and Darbut ophiolites are both steep fault zones(>70°)of serpentinite mélange,in contact on either side with regionally distributed and undeformed Upper Devonian–Lower Carboniferous ocean-floor peperitic basalts and overlying sedimentary successions.Ultramafic rocks is serpentinized and foliated to form the matrix of mélange.Some small blocks of peridotite are mylonitic and strongly foliated.Blocks of gabbro generally underwent prehnitization,epidotization and chloritization and many are metasomatized to rodingite.Pods of medium to fine grained amphibolites are encased in serpentinite and display relict gabbroic textures and amphibolite-facies assemblages.The Baijiantan ophiolitic mélange also includes amphibolite brecciasconsistingofcentimeter-sizedmylonitic amphibolite clasts embedded within a serpentinite matrix.Basalt lavas cropping out in the Baijiantan ophiolitic mélange are of two types:type 1 and type 2 lavas.The type1 lavas occur within the fault zones as small blocks withinthe matrix of ultramafic rocks,tectonically juxtaposed against other rocks.The type 2 basalt lava came from the peperite-bearing unit.Besides the ultramafic rocks,gabbros,and basalt lavas,the other supracrustal rocks in the ophiolitic mélange include sandstone,chert,tuff,and very rare limestone.Sandstones predominate and most of them are tuffaceous;their characteristics are consistent with the sandstones from surrounding Lower Carboniferous sedimentary formations.Sandstone blocks within the mélanges also have detrital zircon age distributions(300-400 Ma)and characteristics similar to surrounding Carboniferous sediments.The rock assemblages in the mélanges indicate the ophiolitic mélanges consist of locally derived rocks,in contrast to conventional ophiolitic mélanges.The ophiolitic mélanges show classic structural features of strike-slip shearing regimes,including subhorizontal slickenside lineations(<20°),consistent steeply dipping foliation(>75°)in the matrix,and elongated shapes of blocks aligned parallel to the shear zone.Consistent shear-sense indicators including slip-fiber lineations,Riedel shears,asymmetric blocks,shear band cleavages and veins indicate a horizontal sinistral sense of movement.The occurrence of the amphibolite and ultramafic mylonite in the mélanges probably record early,deep-seated strike slip,indicating that the fault zones extended downward through the oceanic crust.The amphibolite-facies metamorphism then was superimposed by brittle deformation at a shallow level to form fault breccias during the mélange formation.So the ophiolitic mélanges originated from crustal-scale sinistral strike-slip fault zones,not as major plate boundaries or subduction-suture zones.The youngest units of the mélanges are the deformed blocks of Lower Carboniferous basin-fill sedimentary rocks,indicating that the ultimate formation of the mélanges was after deposition of the Lower Carboniferous strata(detrital zircon age modes:320-330 Ma),but before the age of the intruding granite and the dike cutting the mélanges(~310 Ma).Based on above discussions and taking into consideration of the previous studies,a tectonic evolution scenario is proposed for the Devonian to Carboniferous in the West Junggar region.In the middle Devonian or earlier(>390Ma),a paleo-ocean basin existed,stretching across North Xinjiang from Darbut-Baijiantan area in West Junggar to the Kalamaili area in East Junggar.This basin was most likelyaback-arcbasinrelatedtothe Boshchekule–Chengiz–Yemaquan arc.Subduction ended in thepaleo-oceanbasinrepresentedbythe Hongguleleng-Kujibai-Armantai ophiolite belt by late Devonian(375-360 Ma),leading to slab break-off and upwelling of asthenosphere under the remnant ocean basin,which induced The OIB-like basalts in West Junggar.The oceanic basin started to receive sufficient sediment deposition into which OIB-like basalts flows could bulldoze to form the regional distributed peperites(~360 Ma).A little later,in the early Carboniferous(~340 Ma),continent-continent collision took place between the Junggar block and the Yemaquan arc,and Kalamaili ophiolite obduction occurred in the eastern part of Junggar block.The remnant ocean basin was preserved in the western part of the Junggar Block.Accompanying the relative motion between Junggar block and ocean basin in West Junggar during collision,a series of NW trending sinistral strike-slip faults were triggered and activated parallel to the western boundary of the Junggar block.During the late stage of the Early Carboniferous(~320 Ma),the remnant ocean basin was almost filled with sediments.The collision between the Yili and Junggar blocks at the beginning of the late Carboniferous reactivated the strike-slip faults,which disrupted the oceanic crust and basin-fill successions and caused diapirs of serpentinite to form the Baijiantan and Darbut ophiolitic mélanges.The emplacement of Upper Carboniferous(~310 Ma)stitching A-type granitoid plutons indicates the evolutionary history of the remnant ocean basin and strike-slip fault zone ophiolitic mélanges terminated by that time.展开更多
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i...Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.展开更多
Eastern Hunan-western Jiangxi, the main distribution domain of the Luoxiao MountainRange, is one of the key districts of the Circum-Pacific tectonically active belt in China, in whichNNE-trending en echelon strike-sli...Eastern Hunan-western Jiangxi, the main distribution domain of the Luoxiao MountainRange, is one of the key districts of the Circum-Pacific tectonically active belt in China, in whichNNE-trending en echelon strike-slip faulting since Cenozoic time has obviously controlled thefundamental framework of the modern land forms. Based on the study of tectonic evolution and ac-tive strike-slip faults, this paper discusses the forms, types and combinations of the modern tec-tonic land forms in this region.展开更多
Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship i...Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate the throw and damage zone width of five strike-slip faults a ecting Ordovician carbonates of the Tarim intracraton basin,NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size faults, which involve multiple faulting stages.展开更多
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in...A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.展开更多
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ...Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.展开更多
Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provid...Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures,including seismic tomography,fault zone seismic wave analysis,and seismicity analysis.Observational conditions limit our current ability to fully characterize fault zones,for example,insufficient imaging resolution to discern small-scale anomalies,incomplete capture of crucial fault zone seismic waves,and limited precision in event location accuracy.Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures.Moreover,we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array.We found that utilizing a dense seismic array can identify small-scale features within fault zones,aiding in the interpretation of fault zone geometry and material properties.展开更多
Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone....Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone. However, characteristics of rare earth elements show that intrusions in the Zhangbaling uplift zone have the characteristics of mantle source type and those in the eastern margin of Dabie belt are the typical crust source type. Therefore, Au-deposits related to the intrusions in the Zhangbaling uplift zone are developed better than those in the eastern margin of the Dabieshan. The research results of the rare earth elements coincide with the studies of geophysics, tectonic setting and stable isotope. It is further indicated that the rare earth elements offer effective approach to tracing the material sources of magmatic rocks.展开更多
In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic dat...In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.展开更多
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel...Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas.展开更多
A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon...A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon accumulation conditions,the geometry,kinematics,and reservoir control of a large synthetic overlapping transfer zone in the south of the Wenchang A subsag in the Zhujiang(Pearl)River Mouth basin were investigated.Results indicate that the development and evolution of the transfer zone was controlled by the interaction between pre-existing faults and regional stress transformation.The intense rifting of the main faults of the transfer zone controlled the development of source rocks and faultcontrolled slope break paleogeomorphology.The strike-slip overprint since the Oligocene is conducive to the formation of a large-scale fault-anticline trap,and the secondary faults in the transfer zone contribute to the hydrocarbon transportation.The conjugate intersection area of the NE-and NW-trending faults offers more opportunity for hydrocarbon migration and accumulation.展开更多
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests...Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.展开更多
Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes alon...Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones.展开更多
Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault...Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault zone can be divided into three deformation regions, namely, the north, central and south regions. The north region lies on the eastern side of the Northwest Yunnan extensional taphrogenic belt, which is characterized by the 3 sets of rift-depression basins striking NNW, NNE and near N-S since the Pliocene time, and on its western side is the Lanping-Yunlong compressive deformation belt of the Paleogene to Neogene; the deformation in the central region is characterized by dextral strike-slip or shearing. The east Yunnan Miocene compressive deformation belt lies on the eastern side of the fault in the south, and the Tengtiaohe tensile fault depression belt is located on its west. In terms of tectonic geomorphology, the aforementioned deformation is represented by basin-range tectonics in the north, linear faulted valley-basins in the central part and compressive (or tensional) basins in the south. Among them, the great variance in elevation of the planation surfaces on both sides of the Cangshan-Erhai fault suggests prominent normal faulting along the Red River fault since the Pliocene. From the viewpoint of spatial-temporal evolution, the main active portion of the fault was the southern segment in the Paleogene-Miocene-Pliocene, which is represented by “tearing” from south to north. The main active portion of the fault has migrated to the northern segment since the Pliocene, especially in the late Quaternary, which is characterized by extensional slip from north to southeast. The size of the deformation region and the magnitude of deformation show that the eastern plate of the Red River fault has been an active plate of the relative movement of blocks.展开更多
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot...Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.展开更多
Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimi...Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.展开更多
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone ha...The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.展开更多
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight...The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.展开更多
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
文摘The West Junggar region of western China,located in the far eastern end of the Kazakhstan orocline,occupies the junction of the Siberia,Tarim and Kazakhstan blocks,which is crucial for palinspastic reconstruction of the CAOB.The principal rock assemblages in West Junggar include Paleozoic ophiolitic mélanges and a thick,undeformed Upper Devonian–Lower Carboniferous sedimentary succession as the boundary of the mélanges,both of which are intruded by sub-circular Upper Carboniferous granitoid plutons and intermediate-basic-mafic dykes.On the basis of the sedimentary structures like cross bedding and convolute bedding and the geochronology data,the Upper Devonian–Lower Carboniferous sedimentary successions were identified as the Tailegula,Baogutu,and Xibeikulasi formations from the bottom up,which is an apparent shallowing-upwards ocean basin fill succession,from radiolarian cherts through 2000 meters of flysch to a more neritic Baogutu Formation to a fluvial Xibeikulasi Formation.At the bottom of the Tailegula Formation there is a peperite-bearing unit:a succession of extrusive mafic rock,mainly basaltic lava,with interbeds or blocks of sedimentary rocks including carbonate,radiolarian chert,calcareous siltstone and minor fine-grained tuffaceous sandstone.Peperites in the Tailegula are thickest and best developed as the type section.Four types of peperites were identified based on of the volcanic clast shapes and sediment-matrix properties in Tailegula:(1)arbonatesediment-hosted fluidal peperites,(2)sandstone-hosted fluidal peperites,(3)tuff-hosted mixed fluidal and blocky peperites and(4)carbonate-sediment-hosted blocky peperites.Zircon LA-ICP-MS U-Pb dating of a tuff lens enclosed by lava showed that the peperites formed in the Late Devonian(ca.364 Ma).The widespread peperitebearing succession in the Tailegula Formation is of variablethickness at different sites in West Junggar,such as the Tailegula,Baijiantan,Kalaxiuka,Saertuohai,Dagun,west of the Akebastaw granite and Shinaizha areas.The peperite-bearing unit is generally undeformed in contrast to the highly deformed slices of ophiolite,and is continuously distributed as a stratigraphic section regionally on either side of the Darbut and Baijiantan ophiolitic belts.It can be taken as a mark layer to demonstrate the existence of a shallow remnant ocean basin from the end of Devonian in West Junggar,which is an important component of oceanic crust in the remnant ocean basin.Peperite,underlying Devonian or earlier oceanic crust developed in the spreading process of the ocean basin,and overlying Carboniferous remnant ocean basin-fill succession constitute the complete evolution sequence of the remnant ocean basin.The Darbut and Baijiantan ophiolitic belts should not be interpreted as significant plate boundaries and represent the underlying ocean crust uplifted along tectonic lineaments within a continuous shallow remnant ocean basin.The Baijiantan and Darbut ophiolites are both steep fault zones(>70°)of serpentinite mélange,in contact on either side with regionally distributed and undeformed Upper Devonian–Lower Carboniferous ocean-floor peperitic basalts and overlying sedimentary successions.Ultramafic rocks is serpentinized and foliated to form the matrix of mélange.Some small blocks of peridotite are mylonitic and strongly foliated.Blocks of gabbro generally underwent prehnitization,epidotization and chloritization and many are metasomatized to rodingite.Pods of medium to fine grained amphibolites are encased in serpentinite and display relict gabbroic textures and amphibolite-facies assemblages.The Baijiantan ophiolitic mélange also includes amphibolite brecciasconsistingofcentimeter-sizedmylonitic amphibolite clasts embedded within a serpentinite matrix.Basalt lavas cropping out in the Baijiantan ophiolitic mélange are of two types:type 1 and type 2 lavas.The type1 lavas occur within the fault zones as small blocks withinthe matrix of ultramafic rocks,tectonically juxtaposed against other rocks.The type 2 basalt lava came from the peperite-bearing unit.Besides the ultramafic rocks,gabbros,and basalt lavas,the other supracrustal rocks in the ophiolitic mélange include sandstone,chert,tuff,and very rare limestone.Sandstones predominate and most of them are tuffaceous;their characteristics are consistent with the sandstones from surrounding Lower Carboniferous sedimentary formations.Sandstone blocks within the mélanges also have detrital zircon age distributions(300-400 Ma)and characteristics similar to surrounding Carboniferous sediments.The rock assemblages in the mélanges indicate the ophiolitic mélanges consist of locally derived rocks,in contrast to conventional ophiolitic mélanges.The ophiolitic mélanges show classic structural features of strike-slip shearing regimes,including subhorizontal slickenside lineations(<20°),consistent steeply dipping foliation(>75°)in the matrix,and elongated shapes of blocks aligned parallel to the shear zone.Consistent shear-sense indicators including slip-fiber lineations,Riedel shears,asymmetric blocks,shear band cleavages and veins indicate a horizontal sinistral sense of movement.The occurrence of the amphibolite and ultramafic mylonite in the mélanges probably record early,deep-seated strike slip,indicating that the fault zones extended downward through the oceanic crust.The amphibolite-facies metamorphism then was superimposed by brittle deformation at a shallow level to form fault breccias during the mélange formation.So the ophiolitic mélanges originated from crustal-scale sinistral strike-slip fault zones,not as major plate boundaries or subduction-suture zones.The youngest units of the mélanges are the deformed blocks of Lower Carboniferous basin-fill sedimentary rocks,indicating that the ultimate formation of the mélanges was after deposition of the Lower Carboniferous strata(detrital zircon age modes:320-330 Ma),but before the age of the intruding granite and the dike cutting the mélanges(~310 Ma).Based on above discussions and taking into consideration of the previous studies,a tectonic evolution scenario is proposed for the Devonian to Carboniferous in the West Junggar region.In the middle Devonian or earlier(>390Ma),a paleo-ocean basin existed,stretching across North Xinjiang from Darbut-Baijiantan area in West Junggar to the Kalamaili area in East Junggar.This basin was most likelyaback-arcbasinrelatedtothe Boshchekule–Chengiz–Yemaquan arc.Subduction ended in thepaleo-oceanbasinrepresentedbythe Hongguleleng-Kujibai-Armantai ophiolite belt by late Devonian(375-360 Ma),leading to slab break-off and upwelling of asthenosphere under the remnant ocean basin,which induced The OIB-like basalts in West Junggar.The oceanic basin started to receive sufficient sediment deposition into which OIB-like basalts flows could bulldoze to form the regional distributed peperites(~360 Ma).A little later,in the early Carboniferous(~340 Ma),continent-continent collision took place between the Junggar block and the Yemaquan arc,and Kalamaili ophiolite obduction occurred in the eastern part of Junggar block.The remnant ocean basin was preserved in the western part of the Junggar Block.Accompanying the relative motion between Junggar block and ocean basin in West Junggar during collision,a series of NW trending sinistral strike-slip faults were triggered and activated parallel to the western boundary of the Junggar block.During the late stage of the Early Carboniferous(~320 Ma),the remnant ocean basin was almost filled with sediments.The collision between the Yili and Junggar blocks at the beginning of the late Carboniferous reactivated the strike-slip faults,which disrupted the oceanic crust and basin-fill successions and caused diapirs of serpentinite to form the Baijiantan and Darbut ophiolitic mélanges.The emplacement of Upper Carboniferous(~310 Ma)stitching A-type granitoid plutons indicates the evolutionary history of the remnant ocean basin and strike-slip fault zone ophiolitic mélanges terminated by that time.
基金financially supported by the China Petroleum&Chemical Corporation(SINOPEC)(Grant No.P18047-2)the National Natural Science Foundation of China(Grant No.U19B6003-01)the National Key Research and Development Program of China(Grant No.2017YFC0601405)。
文摘Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.
文摘Eastern Hunan-western Jiangxi, the main distribution domain of the Luoxiao MountainRange, is one of the key districts of the Circum-Pacific tectonically active belt in China, in whichNNE-trending en echelon strike-slip faulting since Cenozoic time has obviously controlled thefundamental framework of the modern land forms. Based on the study of tectonic evolution and ac-tive strike-slip faults, this paper discusses the forms, types and combinations of the modern tec-tonic land forms in this region.
基金partly supported by National Natural Science Foundation of China(Grant No.41472103)Technology Major Project(2016ZX05004001)
文摘Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate the throw and damage zone width of five strike-slip faults a ecting Ordovician carbonates of the Tarim intracraton basin,NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size faults, which involve multiple faulting stages.
基金This research was supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Natural Science Foundation of China(42072234).The authors would like to appreciate all the people,who supported the data,testing,and analyses.Many thanks to the anonymous reviewers,whose comments improve the quality of our manuscript.
文摘A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.
基金funded by the National Natural Science Foundation of China(No.U21B2063)the Science and Technology Department of China Petrochemical Corporation(Sinopec)(No.P21086-3,No.P22122).
文摘Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)the National Natural Science Foundation of China(No.U2039204)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB23B22).
文摘Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures,including seismic tomography,fault zone seismic wave analysis,and seismicity analysis.Observational conditions limit our current ability to fully characterize fault zones,for example,insufficient imaging resolution to discern small-scale anomalies,incomplete capture of crucial fault zone seismic waves,and limited precision in event location accuracy.Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures.Moreover,we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array.We found that utilizing a dense seismic array can identify small-scale features within fault zones,aiding in the interpretation of fault zone geometry and material properties.
基金Project supported by the National Natural Science Foundation of China (40272094)
文摘Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone. However, characteristics of rare earth elements show that intrusions in the Zhangbaling uplift zone have the characteristics of mantle source type and those in the eastern margin of Dabie belt are the typical crust source type. Therefore, Au-deposits related to the intrusions in the Zhangbaling uplift zone are developed better than those in the eastern margin of the Dabieshan. The research results of the rare earth elements coincide with the studies of geophysics, tectonic setting and stable isotope. It is further indicated that the rare earth elements offer effective approach to tracing the material sources of magmatic rocks.
基金partly supported by the National Natural Science Foundation of China (Grant No. 4224100017)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance (Grant No.2020CX010300)。
文摘In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
基金This contribution was partially supported by the Turkish government through the 1002-C project in Natural Disasters Focused Fieldwork Emergency Support Program managed by the TUBITAK.I am grateful to F.Koçbulut and S.Koşaroğlu for helping me with the trenching studies.I also gratefully acknowledge H.Sözbilir,M.Nas,and E.Akgün for comments and suggestions.Furthermore,I extend my gratitude to the anonymous referees for their constructive criticisms and insightful feedback during the evaluation phase of this manuscript.
文摘Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas.
基金Supported by the National Natural Science Foundation of China(Nos.42302155,42072169,42072235)the Natural Science Foundation of Shandong Province(No.ZR2023QD016)+2 种基金the China Postdoctoral Science Foundation(No.2022M713461)the Qingdao Postdoctoral Application Research Funds(No.QDBSH20220202067)the Fundamental Research Funds for the Central Universities(No.22CX06005A)。
文摘A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon accumulation conditions,the geometry,kinematics,and reservoir control of a large synthetic overlapping transfer zone in the south of the Wenchang A subsag in the Zhujiang(Pearl)River Mouth basin were investigated.Results indicate that the development and evolution of the transfer zone was controlled by the interaction between pre-existing faults and regional stress transformation.The intense rifting of the main faults of the transfer zone controlled the development of source rocks and faultcontrolled slope break paleogeomorphology.The strike-slip overprint since the Oligocene is conducive to the formation of a large-scale fault-anticline trap,and the secondary faults in the transfer zone contribute to the hydrocarbon transportation.The conjugate intersection area of the NE-and NW-trending faults offers more opportunity for hydrocarbon migration and accumulation.
基金supported by the National Natural Science Foundation of China,NSFC(No.42202318).
文摘Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.
文摘Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones.
文摘Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault zone can be divided into three deformation regions, namely, the north, central and south regions. The north region lies on the eastern side of the Northwest Yunnan extensional taphrogenic belt, which is characterized by the 3 sets of rift-depression basins striking NNW, NNE and near N-S since the Pliocene time, and on its western side is the Lanping-Yunlong compressive deformation belt of the Paleogene to Neogene; the deformation in the central region is characterized by dextral strike-slip or shearing. The east Yunnan Miocene compressive deformation belt lies on the eastern side of the fault in the south, and the Tengtiaohe tensile fault depression belt is located on its west. In terms of tectonic geomorphology, the aforementioned deformation is represented by basin-range tectonics in the north, linear faulted valley-basins in the central part and compressive (or tensional) basins in the south. Among them, the great variance in elevation of the planation surfaces on both sides of the Cangshan-Erhai fault suggests prominent normal faulting along the Red River fault since the Pliocene. From the viewpoint of spatial-temporal evolution, the main active portion of the fault was the southern segment in the Paleogene-Miocene-Pliocene, which is represented by “tearing” from south to north. The main active portion of the fault has migrated to the northern segment since the Pliocene, especially in the late Quaternary, which is characterized by extensional slip from north to southeast. The size of the deformation region and the magnitude of deformation show that the eastern plate of the Red River fault has been an active plate of the relative movement of blocks.
基金Chinese Joint Seismological Science Foundation (102002).
文摘Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.
文摘Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.
基金Chinese Joint Seismological Science Foundation (201017).
文摘The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.
基金supported by the Special Project of Basic Work of Science and Technology(grant No.2011FY110100-2)the Project of China Geological Survey(grant No.1212010914025 and No.12120113038000)the Project of 12~(th) Five-Year National Sci-Tech Support Plan(grant No.2011BAK12B09)
文摘The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.