Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatur...Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatures are derived, and the effects of the magnetic field on the statistic properties of the system are analysed. It is shown that, as long as the temperature is not zero, the effects of the magnetic field on the thermodynamic quantities of the system contain both oscillatory and non-oscillatory parts. For the non-oscillatory part, compared with the situation of Fermi gas in a weak magnetic field, the influence of the magnetic field on the thermodynamic quantities is not exactly the same. For the oscillatory part, the period and amplitude of the oscillation are all related to the magnetic field. Due to the oscillation, the chemical potential may be greater than Ferim energy of the system, but the oscillation does not affect the thermodynamic stability of the system.展开更多
β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak ...β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.展开更多
The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on th...The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.展开更多
The chemical potential of electrons in a strong magnetic field is investigated. It is shown that the magnetic field has only a slight effect on electron chemical potential when B 〈 10^11 T, but electron chemical pote...The chemical potential of electrons in a strong magnetic field is investigated. It is shown that the magnetic field has only a slight effect on electron chemical potential when B 〈 10^11 T, but electron chemical potential will decrease greatly when B 〉 10^11 T. The effects of a strong magnetic field on electron capture rates for ^60Fe are discussed, and the result shows that the electron capture sharply decreases because of the strong magnetic field.展开更多
Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. T...Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 〈 γ 〈 4 and 0.02 〈 γ 〈 0.05, in which the 1^1(-1)6+ and 1^1(-2)^+ states start to become bound, respectively, are also determined based on the calculated electron detachment energies.展开更多
In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooli...In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.展开更多
A simple and efficient screening model for studying the effects of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates on magnetar surfaces is proposed in this paper. The most in...A simple and efficient screening model for studying the effects of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates on magnetar surfaces is proposed in this paper. The most interesting thermonuclear reactions, including hydrogen burning by the CNO cycle and helium burning by the triple alpha reaction, are investigated on the surface ofmagnetars. We find that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have a dramatic effect on the thermonuclear runaways and bursts on the surfaces of magnetars.展开更多
In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates ...In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.展开更多
Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on...Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star. If the magnetic field is superstrong (B=10^17 T), the mass, radius, and the deformation will become smaller effectively.展开更多
By solving a time-dependent Schrodinger equation(TDSE), we studied the electron capture process in the He^2++ H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancem...By solving a time-dependent Schrodinger equation(TDSE), we studied the electron capture process in the He^2++ H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 ke V/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models.展开更多
Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. ...Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48MQ with BD = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account.展开更多
We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam e...We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.展开更多
An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of e...An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of eutectic Al-Si alloy have been investigated experimentally. It is found that the eutectic structure has been refined by solely imposing high magnetic field while it is coarsened under the electromagnetic vibration. Furthermore, polyhedral Si grains and non-dendritic α-Al appeared when the electromagnetic vibration strength was strong enough. The refining of eutectic structure is attributed to the decrease of diffusion coefficient caused by the strong magnetic field. The coarseness of eutectic structure may be attributed to the convection caused by electromagnetic vibration. Strong convection may break co-operative growth of eutectic phases to form polyhedral Si grains and non-dendritic α-Al.展开更多
Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3...Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3d_1, 4d-1, 3d-2, 4d-2, 4f-2 , and 5f-2 as a function of magnetic field strengths with a range from zero up to 2.35 × 10^6 T. The obtained results are compared with available high accuracy theoretical data reported in the literature and found to be in excellent agreement. The comparison also shows that the current method can produce energy levels with an accuracy higher than the existing high accuracy method [Phys. Rev. A 54 (1996) 287]. Here high accuracy energy levels are for the first time reported for the 3d'0, 4d-1, 4d-2, 4f-2, and 5f-2 states.展开更多
The bulk viscosity of interacting strange quark matter in a strong external magnetic field B m with a real equation of state is investigated.It is found that interquark interactions can significantly increase the bulk...The bulk viscosity of interacting strange quark matter in a strong external magnetic field B m with a real equation of state is investigated.It is found that interquark interactions can significantly increase the bulk viscosity,and the magnetic field B_(m) can cause irregular oscillations in both components of the bulk viscosity,ξ||(parallel to B_(m))and ξ⊥(perpendicular to B_(m)).A comparison with non-interacting strange quark matter reveals that when B_(m) is sufficiently large,ξ⊥is more affected by interactions than ξ||.Additionally,the quasi-oscillation of the bulk viscosity with changes in density may facilitate the for-mation of magnetic domains.Moreover,the resulting r-mode instability windows are in good agreement with observational data for compact stars in low-mass X-ray binaries.Specifically,the r-mode instability window for interacting strange quark matter in high magnetic fields has a minimum rotation frequency exceeding 1050 Hz,which may explain the observed very high spin frequency of a pulsar with V=1122 Hz.展开更多
Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field...Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography.The radiographs are analyzed with particle-tracing simulations.The B field at the coil center is inferred to be ~50 T at an irradiance of ~5×10^(14) W·cm^(-2).The B field generation is attributed to the background cold electron flow pointing to the laser focal spot,where a target potential is induced due to the escape of energetic electrons.展开更多
A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into ...A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.展开更多
The 1^10^+ 1^1(-1)^+and 1^1(2)^+ states of the helium atom in the magnetic field regime between 0 and 100 a.u. are studied using a full configuration-interaction (CI) approach. The total energies, derivatives...The 1^10^+ 1^1(-1)^+and 1^1(2)^+ states of the helium atom in the magnetic field regime between 0 and 100 a.u. are studied using a full configuration-interaction (CI) approach. The total energies, derivatives of the total energy with respect to the magnetic field and ionisation energies are calculated with Hylleraas-like functions in spherical coordinates in low to intermediate fields and Hylleraas Caussian functions in cylindrical coordinates in intermediate to high fields, respectively. In intermediate fields, the total energies and ionisation energies are determined in terms of Hermite interpolation, based on the results obtained with the two above-mentioned basis functions. Calculations show that the current method can produce lower total energies and larger ionisation energies, and make the two ionisation energy curves obtained with the two above-mentioned basis functions join smoothly in intermediate fields. Comparisons are also made with previous works.展开更多
Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak...Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak magnetic field makes little effect on β^+ decay but a strong magnetic field (B 〉 10^11 G) improves β^+ decay rates obviously. The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.展开更多
Slanted Fe nanorods prepared by glancing angle deposition on silicon substrates exhibited easy magnetization along their growth axis. By using a thin gold film on a silicon substrate as a buffer layer, slanted Fe nano...Slanted Fe nanorods prepared by glancing angle deposition on silicon substrates exhibited easy magnetization along their growth axis. By using a thin gold film on a silicon substrate as a buffer layer, slanted Fe nanorods can be realigned towards the substrate surface normal by a strong magnetic field. After realignment, the Fe nanorods retained the easy magnetization axis along their growth axis. The effects of the realignment by the strong magnetic field on the properties of the slanted Fe nanorods were also investigated. This study provides a possible way to fabricate magnetic nanostructures for perpendicular recording applications.展开更多
文摘Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatures are derived, and the effects of the magnetic field on the statistic properties of the system are analysed. It is shown that, as long as the temperature is not zero, the effects of the magnetic field on the thermodynamic quantities of the system contain both oscillatory and non-oscillatory parts. For the non-oscillatory part, compared with the situation of Fermi gas in a weak magnetic field, the influence of the magnetic field on the thermodynamic quantities is not exactly the same. For the oscillatory part, the period and amplitude of the oscillation are all related to the magnetic field. Due to the oscillation, the chemical potential may be greater than Ferim energy of the system, but the oscillation does not affect the thermodynamic stability of the system.
基金Project suoported by the National Natural Science Foundation of China (Grant No 10347008).
文摘β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.
基金The project supported by National Natural Science Foundation of China under Grant No.10778719the Scientific Research Fund of the Education Department of Sichuan Province under Grant No.2006A079the Science and Technological Foundation of China West Normal University
文摘The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.
基金supported by the National Natural Science Foundation of China (Grant No.10778719)
文摘The chemical potential of electrons in a strong magnetic field is investigated. It is shown that the magnetic field has only a slight effect on electron chemical potential when B 〈 10^11 T, but electron chemical potential will decrease greatly when B 〉 10^11 T. The effects of a strong magnetic field on electron capture rates for ^60Fe are discussed, and the result shows that the electron capture sharply decreases because of the strong magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874133)
文摘Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 〈 γ 〈 4 and 0.02 〈 γ 〈 0.05, in which the 1^1(-1)6+ and 1^1(-2)^+ states start to become bound, respectively, are also determined based on the calculated electron detachment energies.
基金supported by National Natural Science Foundation of China under Grant No.10778719
文摘In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant No 10778719)the Scientific Research and Fund of Sichuan Provincial Education Department, China (Grant No 2006A079)the Science and Technological Foundation of China West Normal University, China
文摘A simple and efficient screening model for studying the effects of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates on magnetar surfaces is proposed in this paper. The most interesting thermonuclear reactions, including hydrogen burning by the CNO cycle and helium burning by the triple alpha reaction, are investigated on the surface ofmagnetars. We find that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have a dramatic effect on the thermonuclear runaways and bursts on the surfaces of magnetars.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10647116 and 10575140 and the China Postdoctoral Science Foundation under Grant No. 2005037175
文摘Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star. If the magnetic field is superstrong (B=10^17 T), the mass, radius, and the deformation will become smaller effectively.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11104017,11025417,11275029,and 11474032)the National Basic Research Programm of China(Grant No.2013CB922200)the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics(Grant Nos.2014B09036 and 2013A0102005)
文摘By solving a time-dependent Schrodinger equation(TDSE), we studied the electron capture process in the He^2++ H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 ke V/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10947023,11275073,and 11305063)the Fundamental Research Funds for the Central University of China(Grant Nos.2014ZG0036 and 2013ZM107)sponsored by the Science Research Foundation for Returned Overseas Chinese Scholars,SEM,and has made use of NASA’s Astrophysics Data System
文摘Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48MQ with BD = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account.
文摘We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.
基金supported by the National Natural Science Foundation of China(No.59871026)
文摘An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of eutectic Al-Si alloy have been investigated experimentally. It is found that the eutectic structure has been refined by solely imposing high magnetic field while it is coarsened under the electromagnetic vibration. Furthermore, polyhedral Si grains and non-dendritic α-Al appeared when the electromagnetic vibration strength was strong enough. The refining of eutectic structure is attributed to the decrease of diffusion coefficient caused by the strong magnetic field. The coarseness of eutectic structure may be attributed to the convection caused by electromagnetic vibration. Strong convection may break co-operative growth of eutectic phases to form polyhedral Si grains and non-dendritic α-Al.
文摘Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3d_1, 4d-1, 3d-2, 4d-2, 4f-2 , and 5f-2 as a function of magnetic field strengths with a range from zero up to 2.35 × 10^6 T. The obtained results are compared with available high accuracy theoretical data reported in the literature and found to be in excellent agreement. The comparison also shows that the current method can produce energy levels with an accuracy higher than the existing high accuracy method [Phys. Rev. A 54 (1996) 287]. Here high accuracy energy levels are for the first time reported for the 3d'0, 4d-1, 4d-2, 4f-2, and 5f-2 states.
基金This work was supported by the National Natural Science Foundation of China(Nos.12005005,11947098)Key Research Projects of Universities in Henan Province(No.20A140003)。
文摘The bulk viscosity of interacting strange quark matter in a strong external magnetic field B m with a real equation of state is investigated.It is found that interquark interactions can significantly increase the bulk viscosity,and the magnetic field B_(m) can cause irregular oscillations in both components of the bulk viscosity,ξ||(parallel to B_(m))and ξ⊥(perpendicular to B_(m)).A comparison with non-interacting strange quark matter reveals that when B_(m) is sufficiently large,ξ⊥is more affected by interactions than ξ||.Additionally,the quasi-oscillation of the bulk viscosity with changes in density may facilitate the for-mation of magnetic domains.Moreover,the resulting r-mode instability windows are in good agreement with observational data for compact stars in low-mass X-ray binaries.Specifically,the r-mode instability window for interacting strange quark matter in high magnetic fields has a minimum rotation frequency exceeding 1050 Hz,which may explain the observed very high spin frequency of a pulsar with V=1122 Hz.
基金supported by the National Basic Research Program of China(Grant No.2013CBA01501)the National Nature Science Foundation of China(Grant Nos.11135012,11520101003 and 11375262)the National High Technology Research and Development Program of China.
文摘Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography.The radiographs are analyzed with particle-tracing simulations.The B field at the coil center is inferred to be ~50 T at an irradiance of ~5×10^(14) W·cm^(-2).The B field generation is attributed to the background cold electron flow pointing to the laser focal spot,where a target potential is induced due to the escape of energetic electrons.
基金supported by National Natural Science Foundation of China(Nos.11105147,11375197 and 11175179)the Ministry of Education of China(No.IRT1190)
文摘A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874133)
文摘The 1^10^+ 1^1(-1)^+and 1^1(2)^+ states of the helium atom in the magnetic field regime between 0 and 100 a.u. are studied using a full configuration-interaction (CI) approach. The total energies, derivatives of the total energy with respect to the magnetic field and ionisation energies are calculated with Hylleraas-like functions in spherical coordinates in low to intermediate fields and Hylleraas Caussian functions in cylindrical coordinates in intermediate to high fields, respectively. In intermediate fields, the total energies and ionisation energies are determined in terms of Hermite interpolation, based on the results obtained with the two above-mentioned basis functions. Calculations show that the current method can produce lower total energies and larger ionisation energies, and make the two ionisation energy curves obtained with the two above-mentioned basis functions join smoothly in intermediate fields. Comparisons are also made with previous works.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008
文摘Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak magnetic field makes little effect on β^+ decay but a strong magnetic field (B 〉 10^11 G) improves β^+ decay rates obviously. The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.
基金The authors are grateful for financial support from the National Natural Science Foundation of China(No.50931002)and the National Basic Research Program of China(973 Program,No.2007CB-936601).
文摘Slanted Fe nanorods prepared by glancing angle deposition on silicon substrates exhibited easy magnetization along their growth axis. By using a thin gold film on a silicon substrate as a buffer layer, slanted Fe nanorods can be realigned towards the substrate surface normal by a strong magnetic field. After realignment, the Fe nanorods retained the easy magnetization axis along their growth axis. The effects of the realignment by the strong magnetic field on the properties of the slanted Fe nanorods were also investigated. This study provides a possible way to fabricate magnetic nanostructures for perpendicular recording applications.