With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading ...With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading to increasingly serious sub-synchronous oscillation (SSO) problems, which urgently require the generalized classification and characterization of the emerging oscillation problems. This paper classifies and characterizes the emerging types of SSO caused by grid-connected wind turbines to address these issues. Finally, the impact of the typical system parameters changes on the oscillation pattern is analyzed in depth to provide effective support for the subsequent suppression and prevention of SSO.展开更多
Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far fr...Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far from the load centers. Generally series compensated AC transmission and high voltage DC transmission are made use of to improve the transmission capacity as two main effective ways which can solve the problem of large scale wind power transmission. The paper describes the three kinds of impact varieties and impact mechanisms in the sub-synchronous oscillation phenomena of wind power system based on doubly fed induction generator (DFIG) wind generators. At last, we point out the important problem that should be stressed in the wind power system.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchr...When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.展开更多
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from ...This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from PMUs are preprocessed to check for the presence of oscillations.If the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida algorithm.The superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest China.Results show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters.展开更多
The induction generator effect(IGE)and the openloop modal proximity(OLMP)are two different reasons why subsynchronous oscillations(SSOs)in a series-compensated power system(SCPS)may occur.The IGE attributes the growin...The induction generator effect(IGE)and the openloop modal proximity(OLMP)are two different reasons why subsynchronous oscillations(SSOs)in a series-compensated power system(SCPS)may occur.The IGE attributes the growing SSOs to negative resistance,while the OLMP explains the SSO mechanism from the standpoint of modal conditions.In this paper,we investigate the connections between the IGE and the OLMP through equivalent RLC circuit and open-loop modal analysis.Our investigation is conducted for two types of seriescompensated power systems where either a synchronous generator or a DFIG is connected at the sending end.The investigation reveals the conditions,in which the IGE and the OLMP may jointly cause the growing SSOs,i.e.,both the IGE and the OLMP can explain why the growing SSOs occur.Furthermore,the investigation indicates that the IGE and the OLMP may be totally irrelevant and lead to growing SSOs separately.This implies that it is possible that in a SCPS,the growing SSOs are only due to the IGE,and the OLMP is non-existent,and vice versa.Hence,when the growing SSOs occurs in a SCPS,examination based on both the IGE and the OLMP should be carefully conducted in order to find if the oscillatory instability is due to the IGE,or the OLMP,or both of them.展开更多
Emerging sub-synchronous interactions(SSI)in wind-integrated power systems have added intense attention after numerous incidents in the US and China due to the involvement of series compensated transmission lines and ...Emerging sub-synchronous interactions(SSI)in wind-integrated power systems have added intense attention after numerous incidents in the US and China due to the involvement of series compensated transmission lines and power electronics devices.SSI phenomenon occurs when two power system elements exchange energy below the synchro-nous frequency.SSI phenomenon related to wind power plants is one of the most significant challenges to main-taining stability,while SSI phenomenon in practical wind farms,which has been observed recently,has not yet been described on the source of conventional SSI literature.This paper first explains the traditional development of SSI and its classification as given by the IEEE,and then it proposes a classification of SSI according to the current research status,reviews several mitigation techniques and challenges,and discusses analysis techniques for SSI.The paper also describes the effect of the active damping controllers,control scheme parameters,degree of series compensation,and various techniques used in wind power plants(WPPs).In particular,a supplementary damping controller with converter controllers in Doubly Fed Induction Generator based WPPs is briefly pronounced.This paper provides a real-istic viewpoint and a potential outlook for the readers to properly deal with SSI and its mitigation techniques,which can help power engineers for the planning,economical operation,and future expansion of sustainable development.展开更多
Sub-synchronous oscillation(SSO)incidents caused by dynamic interaction between wind farms and power system grids can threaten safe and reliable operations.This paper investigates mechanism studies of SSOs in power sy...Sub-synchronous oscillation(SSO)incidents caused by dynamic interaction between wind farms and power system grids can threaten safe and reliable operations.This paper investigates mechanism studies of SSOs in power systems induced by grid-connected wind farms.First,characteristics of several severe SSO incidents encountered by real power systems caused by grid-connected wind farms are introduced.Second,in terms of principles and responses,this paper illustrates the most commonly adopted mechanism investigation methods for SSOs,which include impedance-based analysis(IMA)and the openloop modal analysis(OMA)methods.Systematic reviews that summarize existing studies using the IMA and OMA methods are discussed in this paper.Furthermore,a discussion of the current research gaps in the investigation of SSOs in power systems caused by grid-connected wind farms is presented.展开更多
In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis softwar...In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis software AUTO97 is adopted to investigate SSR for a single-machine-infinite-bus power system with series capacitor compensation. The investigation results show that SSR is the result of unstable limit cycle after bifurcation. When the system exhibits SSR, some complex periodical orbit bifurcations, such as torus bifurcation and periodical fold bifurcation, may happen with the variation of limit cycle. Furthermore, the initial operation condition may greatly influence the ultimate state of the system. The time-domain simulation is carried out to verify the effectiveness of the results obtained from the bifurcation analysis.展开更多
The main problem of wind turbines is associated with induction generators in their power supply during short circuits in the grid.In this research,a new method is presented for the uninterrupted operation of a wind tu...The main problem of wind turbines is associated with induction generators in their power supply during short circuits in the grid.In this research,a new method is presented for the uninterrupted operation of a wind turbine equipped with an induction generator fed on both sides of feeding during network errors.Wind farms equipped with a doubly-fed induction generator(DFIG)require two abilities to allow system operators to increase proficiency.These capabilities include fault ride-through and synchronization of output force fluctuations,especially when these generators generate significant electrical power.A MATLAB®software environment has been used to evaluate and improve the performance of these turbines.A fuzzy complement(FC)controller is used to improve the performance of the DFIG.The results demonstrate that this controller limits the operation of the turbine current and voltage in the short-circuit mode well.Regarding results obtained from comparing two different modes,it can be said that ripple is 4%in the FC mode,while this parameter is equal to 10%for the proportional-integral controller.展开更多
In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incide...In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incident.This paper presents a Hankel dynamic mode decomposition(DMD)method to identify SSR parameters using synchrophasor data.The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors.It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes.Therefore,the SSR parameters can be calculated once the modal parameter is extracted.Compared with the existing method,the presented work has better dynamic performances as it requires much less data.Thus,it is more suitable for practical cases in which the SSR characteristics are timevarying.The effectiveness and superiority of the proposed method have been verified by both simulations and field data.展开更多
A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and b...A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results.展开更多
In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequen...In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequency oscillation problems covering multiple frequency segments,which seriously threaten system stability and restrict the accommodation of renewable energy.The oscillation problems related to renewable energy integration have become one of the most popular topics in the field of wind power integration and power system stability research.It has received extensive attention from both academia and industries with many promising research results achieved to date.This paper first analyzes several typical multi-frequency oscillation events caused by large-scale wind power integration in domestic and foreign projects,then studies the multi-frequency oscillation problems,including wind turbine’s shafting torsional oscillation,sub/super-synchronous oscillation and high frequency resonance.The state of the art is systematically summarized from the aspects of oscillation mechanism,analysis methods and mitigation measures,and the future research directions are explored.展开更多
Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually o...Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller.展开更多
The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interaction...The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMC- HVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system’s parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.展开更多
基金National Key Research and Development Program of China under Grant No.2017YFB0902002.
文摘With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading to increasingly serious sub-synchronous oscillation (SSO) problems, which urgently require the generalized classification and characterization of the emerging oscillation problems. This paper classifies and characterizes the emerging types of SSO caused by grid-connected wind turbines to address these issues. Finally, the impact of the typical system parameters changes on the oscillation pattern is analyzed in depth to provide effective support for the subsequent suppression and prevention of SSO.
文摘Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far from the load centers. Generally series compensated AC transmission and high voltage DC transmission are made use of to improve the transmission capacity as two main effective ways which can solve the problem of large scale wind power transmission. The paper describes the three kinds of impact varieties and impact mechanisms in the sub-synchronous oscillation phenomena of wind power system based on doubly fed induction generator (DFIG) wind generators. At last, we point out the important problem that should be stressed in the wind power system.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
基金This work was supported by a grant from the science-technology program of China State Grid Corp“Research on the operation and control characteristics when the power sent out through series compensation from large new energy base”(No.52010116000S)。
文摘When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.
基金supported by Korea Electric Power Corporation(No.R21XO01-38)Korea Ministry of Environment(MOE)as Graduate School specialized in Climate Change.
文摘This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from PMUs are preprocessed to check for the presence of oscillations.If the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida algorithm.The superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest China.Results show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters.
基金supported in part by the National Natural Science Foundation of China under Grant 52077144by the Fundamental Research Funds for the Central Universities(YJ201654).
文摘The induction generator effect(IGE)and the openloop modal proximity(OLMP)are two different reasons why subsynchronous oscillations(SSOs)in a series-compensated power system(SCPS)may occur.The IGE attributes the growing SSOs to negative resistance,while the OLMP explains the SSO mechanism from the standpoint of modal conditions.In this paper,we investigate the connections between the IGE and the OLMP through equivalent RLC circuit and open-loop modal analysis.Our investigation is conducted for two types of seriescompensated power systems where either a synchronous generator or a DFIG is connected at the sending end.The investigation reveals the conditions,in which the IGE and the OLMP may jointly cause the growing SSOs,i.e.,both the IGE and the OLMP can explain why the growing SSOs occur.Furthermore,the investigation indicates that the IGE and the OLMP may be totally irrelevant and lead to growing SSOs separately.This implies that it is possible that in a SCPS,the growing SSOs are only due to the IGE,and the OLMP is non-existent,and vice versa.Hence,when the growing SSOs occurs in a SCPS,examination based on both the IGE and the OLMP should be carefully conducted in order to find if the oscillatory instability is due to the IGE,or the OLMP,or both of them.
基金supported financially by the Ministerio de Ciencia e Innovación(Spain)and the European Regional Development Fund,under Research Grant WindSound project(Ref.:PID2021-125278OB-I00).
文摘Emerging sub-synchronous interactions(SSI)in wind-integrated power systems have added intense attention after numerous incidents in the US and China due to the involvement of series compensated transmission lines and power electronics devices.SSI phenomenon occurs when two power system elements exchange energy below the synchro-nous frequency.SSI phenomenon related to wind power plants is one of the most significant challenges to main-taining stability,while SSI phenomenon in practical wind farms,which has been observed recently,has not yet been described on the source of conventional SSI literature.This paper first explains the traditional development of SSI and its classification as given by the IEEE,and then it proposes a classification of SSI according to the current research status,reviews several mitigation techniques and challenges,and discusses analysis techniques for SSI.The paper also describes the effect of the active damping controllers,control scheme parameters,degree of series compensation,and various techniques used in wind power plants(WPPs).In particular,a supplementary damping controller with converter controllers in Doubly Fed Induction Generator based WPPs is briefly pronounced.This paper provides a real-istic viewpoint and a potential outlook for the readers to properly deal with SSI and its mitigation techniques,which can help power engineers for the planning,economical operation,and future expansion of sustainable development.
基金This work was supported by the Science and Technology Project of State Grid Corporation of China(No.NYB17201800102).
文摘Sub-synchronous oscillation(SSO)incidents caused by dynamic interaction between wind farms and power system grids can threaten safe and reliable operations.This paper investigates mechanism studies of SSOs in power systems induced by grid-connected wind farms.First,characteristics of several severe SSO incidents encountered by real power systems caused by grid-connected wind farms are introduced.Second,in terms of principles and responses,this paper illustrates the most commonly adopted mechanism investigation methods for SSOs,which include impedance-based analysis(IMA)and the openloop modal analysis(OMA)methods.Systematic reviews that summarize existing studies using the IMA and OMA methods are discussed in this paper.Furthermore,a discussion of the current research gaps in the investigation of SSOs in power systems caused by grid-connected wind farms is presented.
基金Supported by the National Basic Research Program of China ("973" Projects) (Grant Nos.1998020319 and 2004CB217906)
文摘In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis software AUTO97 is adopted to investigate SSR for a single-machine-infinite-bus power system with series capacitor compensation. The investigation results show that SSR is the result of unstable limit cycle after bifurcation. When the system exhibits SSR, some complex periodical orbit bifurcations, such as torus bifurcation and periodical fold bifurcation, may happen with the variation of limit cycle. Furthermore, the initial operation condition may greatly influence the ultimate state of the system. The time-domain simulation is carried out to verify the effectiveness of the results obtained from the bifurcation analysis.
文摘The main problem of wind turbines is associated with induction generators in their power supply during short circuits in the grid.In this research,a new method is presented for the uninterrupted operation of a wind turbine equipped with an induction generator fed on both sides of feeding during network errors.Wind farms equipped with a doubly-fed induction generator(DFIG)require two abilities to allow system operators to increase proficiency.These capabilities include fault ride-through and synchronization of output force fluctuations,especially when these generators generate significant electrical power.A MATLAB®software environment has been used to evaluate and improve the performance of these turbines.A fuzzy complement(FC)controller is used to improve the performance of the DFIG.The results demonstrate that this controller limits the operation of the turbine current and voltage in the short-circuit mode well.Regarding results obtained from comparing two different modes,it can be said that ripple is 4%in the FC mode,while this parameter is equal to 10%for the proportional-integral controller.
基金supported by the China Key Technology Research on Risk Perception of Sub-Synchronous Oscillation of Grid with Large-Scale New Energy Access SGTYHT/21-JS-223.
文摘In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incident.This paper presents a Hankel dynamic mode decomposition(DMD)method to identify SSR parameters using synchrophasor data.The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors.It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes.Therefore,the SSR parameters can be calculated once the modal parameter is extracted.Compared with the existing method,the presented work has better dynamic performances as it requires much less data.Thus,it is more suitable for practical cases in which the SSR characteristics are timevarying.The effectiveness and superiority of the proposed method have been verified by both simulations and field data.
基金Project supported by the National Natural Science Foundation of China(No.10632040)
文摘A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results.
基金This work was supported by the National Natural Science Foundation of China(No.51577174).
文摘In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequency oscillation problems covering multiple frequency segments,which seriously threaten system stability and restrict the accommodation of renewable energy.The oscillation problems related to renewable energy integration have become one of the most popular topics in the field of wind power integration and power system stability research.It has received extensive attention from both academia and industries with many promising research results achieved to date.This paper first analyzes several typical multi-frequency oscillation events caused by large-scale wind power integration in domestic and foreign projects,then studies the multi-frequency oscillation problems,including wind turbine’s shafting torsional oscillation,sub/super-synchronous oscillation and high frequency resonance.The state of the art is systematically summarized from the aspects of oscillation mechanism,analysis methods and mitigation measures,and the future research directions are explored.
文摘Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller.
文摘The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMC- HVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system’s parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.