Let N be a nest of projections on a Hilbert space H and T(N) be the corresponding nest algebra. Let A be a large subalgebra of T(N). It is proved that any maximal n-nilpotent ideal of A is in the form of A∩R F,where...Let N be a nest of projections on a Hilbert space H and T(N) be the corresponding nest algebra. Let A be a large subalgebra of T(N). It is proved that any maximal n-nilpotent ideal of A is in the form of A∩R F,where F is a finite subnest of N and R F is the Jacobson radical of T(F).Using this result can prove that two large subalgebras are isomorphic if and only if the corresponding nests are similar.展开更多
Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgeb...A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this paper, we prove that a linear mapφon P is commuting if and only if φ is a scalar multiplication map on P.展开更多
Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,wi...Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering.展开更多
In this paper, we prove the nonimbedding theorem in nilpotent n-Lie algebras which is an analogue to the nonimbedding theorem of Burnsids in groups of prime power order. We also study the properties of Frattini subalg...In this paper, we prove the nonimbedding theorem in nilpotent n-Lie algebras which is an analogue to the nonimbedding theorem of Burnsids in groups of prime power order. We also study the properties of Frattini subalgebras of n-Lie algebras over the field with characteristic zero, and prove that the Frattini subalgebra of any k-solvable (k ≥2) n-Lie algebra is zero.展开更多
Let G be a finite group, H ≤ G and R be a commutative ring with an identity 1R. Let CRG(H)={α ∈ RG|αh = hα for all h ∈ H), which is called the centralizer subalgebra of H in RG. Obviously, if H=G then CRG(H...Let G be a finite group, H ≤ G and R be a commutative ring with an identity 1R. Let CRG(H)={α ∈ RG|αh = hα for all h ∈ H), which is called the centralizer subalgebra of H in RG. Obviously, if H=G then CRG(H) is just the central subalgebra Z(RG) of RG. In this note, we show that the set of all H- conjugacy class sums of G forms an R-basis of CRG(H). Furthermore, let N be a normal subgroup of G and γthe natural epimorphism from G to G to G/N. Then γ induces an epimorphism from RG to RG, also denoted by % We also show that if R is a field of characteristic zero, then γ induces an epimorphism from CRG(H) to CRG(H), that is, 7(CRG(H)) = CRG(H).展开更多
Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if ...Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on g that preserve staircase subalgebras.展开更多
In this paper, we first prove that the dual module of a rational module is still a rational module, and maximum rational modules keep their exac t properties. Then, we give the Maschke theorem of the coideal subalge...In this paper, we first prove that the dual module of a rational module is still a rational module, and maximum rational modules keep their exac t properties. Then, we give the Maschke theorem of the coideal subalgebra of qua si-Frobenius algebra, and give some equivalent conditions for the ideal subcoal gebra.展开更多
The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathem...The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.展开更多
Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebr...Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebras of gln(R) that contain dn(F:) are classified completely.展开更多
Engel subalgebras of finite-dimensional n-Lie algebras are shown to have similar properties to those of Lie algebras. Using these, it is shown that an n-Lie algebra, all of whose maximal subalgebras are ideals, is nil...Engel subalgebras of finite-dimensional n-Lie algebras are shown to have similar properties to those of Lie algebras. Using these, it is shown that an n-Lie algebra, all of whose maximal subalgebras are ideals, is nilpotent. A primitive 2-soluble n-Lie algebra is shown to split over its minimal ideal, and all the complements to its minimal ideal are conjugate. A subalgebra is shown to be a Cartan subalgebra if and only if it is minimal Engel, provided that the field has sufficiently many elements. Cartan subalgebras are shown to have a property analogous to intravariance.展开更多
Let F be a field of characteristic 0, Mn(F) the full matrix algebra over F, t the subalgebra of Mn(F) consisting of all upper triangular matrices. Any subalgebra of Mn(F) containing t is called a parabolic subal...Let F be a field of characteristic 0, Mn(F) the full matrix algebra over F, t the subalgebra of Mn(F) consisting of all upper triangular matrices. Any subalgebra of Mn(F) containing t is called a parabolic subalgebra of Mn(F). Let P be a parabolic subalgebra of Mn(F). A map φ on P is said to satisfy derivability if φ(x·y) = φ(x)·y+x·φ(y) for all x,y ∈ P, where φ is not necessarily linear. Note that a map satisfying derivability on P is not necessarily a derivation on P. In this paper, we prove that a map φ on P satisfies derivability if and only if φ is a sum of an inner derivation and an additive quasi-derivation on P. In particular, any derivation of parabolic subalgebras of Mn(F) is an inner derivation.展开更多
It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of...It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of its exact Borel subalgebras.展开更多
Characterizations of hereditary subalgebras generated by subsets of a C*-algebra are given through open projections.Using these results,we give some equivalent conditions of comparison of positive elements.
Let A be a quasi-hereditary algebra with a strong exact Borel subalgebra. It is proved that for any standard semisimple subalgebra T there exists an exact Borel subalgebra B of A such that T is a maximal semisimple su...Let A be a quasi-hereditary algebra with a strong exact Borel subalgebra. It is proved that for any standard semisimple subalgebra T there exists an exact Borel subalgebra B of A such that T is a maximal semisimple subalgebra of B. It is shown that the maximal length of flags of exact Borel subalgebras of A is the difference of the radium and the rank of Grothendic group of A plus 2. The number of conjugation-classes of exact Borel subalgebras is 1 if and only if A is basic; the number is 2 if and only if A is semisimple. For all other cases, this number is 0 or no less than 3. Furthermore, it is shown that all the exact Borel subalgebras are idempotent-conjugate to each other, that is, for any exact Borel subalgebras B and C of A, there exists an idempotent e of A, and an invertible element u of A, such that eBe = u-1eCeu.展开更多
Let F be an algebraically closed field of characteristic p 〉 3, and g be the Witt algebra over F. Let N be the nilpotent cone of g. An explicit description of N is given, so that the conjugacy classes of Borel subalg...Let F be an algebraically closed field of characteristic p 〉 3, and g be the Witt algebra over F. Let N be the nilpotent cone of g. An explicit description of N is given, so that the conjugacy classes of Borel subalgebras of g under the automorphism group of g are determined. In contrast with only one conjugacy class of Borel subalgebras in a classical simple Lie algebra, there are two conjugacy classes of Borel subalgebras in g. The representatives of conjugacy classes of Borel subalgebras, i.e.,the so-called standard Borel subalgebras, are precisely given.展开更多
Let A be a(left and right) Noetherian ring that is semiperfect. Let e be an idempotent of A and consider the ring Γ :=(1-e)A(1-e) and the semi-simple right A-module Se := e A/e rad A. In this paper, we investigate th...Let A be a(left and right) Noetherian ring that is semiperfect. Let e be an idempotent of A and consider the ring Γ :=(1-e)A(1-e) and the semi-simple right A-module Se := e A/e rad A. In this paper, we investigate the relationship between the global dimensions of A and Γ, by using the homological properties of Se. More precisely, we consider the Yoneda ring Y(e) := Ext_A~*(Se, Se) of e. We prove that if Y(e) is Artinian of finite global dimension, then A has finite global dimension if and only if so does Γ. We also investigate the situation where both A and Γ have finite global dimension. When A is Koszul and finite dimensional, this implies that Y(e) has finite global dimension. We end the paper with a reduction technique to compute the Cartan determinant of Artin algebras. We prove that if Y(e) has finite global dimension, then the Cartan determinants of A and Γ coincide. This provides a new way to approach the long-standing Cartan determinant conjecture.展开更多
Ge(2003)asked the question whether LF∞can be embedded into LF2 as a maximal subfactor.We answer it affirmatively with three different approaches,all containing the same key ingredient:the existence of maximal subgrou...Ge(2003)asked the question whether LF∞can be embedded into LF2 as a maximal subfactor.We answer it affirmatively with three different approaches,all containing the same key ingredient:the existence of maximal subgroups with infinite index.We also show that point stabilizer subgroups for every faithful,4-transitive action on an infinite set give rise to maximal von Neumann subalgebras.By combining this with the known results on constructing faithful,highly transitive actions,we get many maximal von Neumann subalgebras arising from maximal subgroups with infinite index.展开更多
文摘Let N be a nest of projections on a Hilbert space H and T(N) be the corresponding nest algebra. Let A be a large subalgebra of T(N). It is proved that any maximal n-nilpotent ideal of A is in the form of A∩R F,where F is a finite subnest of N and R F is the Jacobson radical of T(F).Using this result can prove that two large subalgebras are isomorphic if and only if the corresponding nests are similar.
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.
基金Supported by the National Natural Science Foundation of China(Ill01084) Supported by the Fujian Province Natural Science Foundation of China
文摘A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this paper, we prove that a linear mapφon P is commuting if and only if φ is a scalar multiplication map on P.
基金the North-West University,Mafikeng campus for its continued support.
文摘Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering.
基金The NSF(2005000088)of Hebei Province the NSF(y2004034)of Hebei University.
文摘In this paper, we prove the nonimbedding theorem in nilpotent n-Lie algebras which is an analogue to the nonimbedding theorem of Burnsids in groups of prime power order. We also study the properties of Frattini subalgebras of n-Lie algebras over the field with characteristic zero, and prove that the Frattini subalgebra of any k-solvable (k ≥2) n-Lie algebra is zero.
基金The NSF(11071155) of Chinathe NSF(2008A03) of Shandong Province
文摘Let G be a finite group, H ≤ G and R be a commutative ring with an identity 1R. Let CRG(H)={α ∈ RG|αh = hα for all h ∈ H), which is called the centralizer subalgebra of H in RG. Obviously, if H=G then CRG(H) is just the central subalgebra Z(RG) of RG. In this note, we show that the set of all H- conjugacy class sums of G forms an R-basis of CRG(H). Furthermore, let N be a normal subgroup of G and γthe natural epimorphism from G to G to G/N. Then γ induces an epimorphism from RG to RG, also denoted by % We also show that if R is a field of characteristic zero, then γ induces an epimorphism from CRG(H) to CRG(H), that is, 7(CRG(H)) = CRG(H).
基金The NSF (11126121) of ChinaPh.D.Fund (B2010-93) of Henan Polytechnic University+1 种基金Natural Science Research Program (112300410120) of Science and Technology Department of Henan ProvinceNatural Science Research Program (2011B110016) of Education Department of Henan Province
文摘Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on g that preserve staircase subalgebras.
文摘In this paper, we first prove that the dual module of a rational module is still a rational module, and maximum rational modules keep their exac t properties. Then, we give the Maschke theorem of the coideal subalgebra of qua si-Frobenius algebra, and give some equivalent conditions for the ideal subcoal gebra.
文摘The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.
基金supported by National Natural Science Foundation of China (Grant No.11171343)the Fundamental Research Funds for the Central Universities (Grant No. 2010LKSX05)
文摘Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebras of gln(R) that contain dn(F:) are classified completely.
文摘Engel subalgebras of finite-dimensional n-Lie algebras are shown to have similar properties to those of Lie algebras. Using these, it is shown that an n-Lie algebra, all of whose maximal subalgebras are ideals, is nilpotent. A primitive 2-soluble n-Lie algebra is shown to split over its minimal ideal, and all the complements to its minimal ideal are conjugate. A subalgebra is shown to be a Cartan subalgebra if and only if it is minimal Engel, provided that the field has sufficiently many elements. Cartan subalgebras are shown to have a property analogous to intravariance.
基金Supported by the National Natural Science Foundation of China (Grant No.11071040)the Natural Science Foundation of Fujian Province (Grant No. 2009J05005)
文摘Let F be a field of characteristic 0, Mn(F) the full matrix algebra over F, t the subalgebra of Mn(F) consisting of all upper triangular matrices. Any subalgebra of Mn(F) containing t is called a parabolic subalgebra of Mn(F). Let P be a parabolic subalgebra of Mn(F). A map φ on P is said to satisfy derivability if φ(x·y) = φ(x)·y+x·φ(y) for all x,y ∈ P, where φ is not necessarily linear. Note that a map satisfying derivability on P is not necessarily a derivation on P. In this paper, we prove that a map φ on P satisfies derivability if and only if φ is a sum of an inner derivation and an additive quasi-derivation on P. In particular, any derivation of parabolic subalgebras of Mn(F) is an inner derivation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771070)partly supported by the NSF of Hainan Province (Grant No. 19702)by the Natural Science Foundation of Education Department of Hainan Province
文摘It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of its exact Borel subalgebras.
基金supported by National Natural Science Foundation of China(Grant No.10626031)Natural Science Foundation of Shandong Province (Grant No.Y2006A03)the Scientific Research Project of the Department of Education of Shandong Province (Grant No.J08LI15)
文摘Characterizations of hereditary subalgebras generated by subsets of a C*-algebra are given through open projections.Using these results,we give some equivalent conditions of comparison of positive elements.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10071062) also by the Doctorate Foundation of Hainan University and the Science and Technology Foundation of the Shanghai Jiaotong University.
文摘Let A be a quasi-hereditary algebra with a strong exact Borel subalgebra. It is proved that for any standard semisimple subalgebra T there exists an exact Borel subalgebra B of A such that T is a maximal semisimple subalgebra of B. It is shown that the maximal length of flags of exact Borel subalgebras of A is the difference of the radium and the rank of Grothendic group of A plus 2. The number of conjugation-classes of exact Borel subalgebras is 1 if and only if A is basic; the number is 2 if and only if A is semisimple. For all other cases, this number is 0 or no less than 3. Furthermore, it is shown that all the exact Borel subalgebras are idempotent-conjugate to each other, that is, for any exact Borel subalgebras B and C of A, there exists an idempotent e of A, and an invertible element u of A, such that eBe = u-1eCeu.
基金Supported by National Natural Science Foundation of China(Grant Nos.11201293 and 11271130)the Innovation Program of Shanghai Municipal Education Commission(Grant Nos.13YZ077 and 12ZZ038)
文摘Let F be an algebraically closed field of characteristic p 〉 3, and g be the Witt algebra over F. Let N be the nilpotent cone of g. An explicit description of N is given, so that the conjugacy classes of Borel subalgebras of g under the automorphism group of g are determined. In contrast with only one conjugacy class of Borel subalgebras in a classical simple Lie algebra, there are two conjugacy classes of Borel subalgebras in g. The representatives of conjugacy classes of Borel subalgebras, i.e.,the so-called standard Borel subalgebras, are precisely given.
基金supported by an NSERC Discovery Grantsupported by the University of Connecticut and by the NSF CAREER grant (Grant No. DMS-1254567)
文摘Let A be a(left and right) Noetherian ring that is semiperfect. Let e be an idempotent of A and consider the ring Γ :=(1-e)A(1-e) and the semi-simple right A-module Se := e A/e rad A. In this paper, we investigate the relationship between the global dimensions of A and Γ, by using the homological properties of Se. More precisely, we consider the Yoneda ring Y(e) := Ext_A~*(Se, Se) of e. We prove that if Y(e) is Artinian of finite global dimension, then A has finite global dimension if and only if so does Γ. We also investigate the situation where both A and Γ have finite global dimension. When A is Koszul and finite dimensional, this implies that Y(e) has finite global dimension. We end the paper with a reduction technique to compute the Cartan determinant of Artin algebras. We prove that if Y(e) has finite global dimension, then the Cartan determinants of A and Γ coincide. This provides a new way to approach the long-standing Cartan determinant conjecture.
基金the National Science Center(NCN)(Grant No.2014/14/E/ST1/00525)Institute of Mathematics,Polish Academy of Sciences(IMPAN)from the Simons Foundation(Grant No.346300)the Matching 2015-2019 Polish Ministry of Science and Higher Education(MNiSW)Fund,and the Research Foundation-Flanders-Polish Academy of Sciences(FWO-PAN).
文摘Ge(2003)asked the question whether LF∞can be embedded into LF2 as a maximal subfactor.We answer it affirmatively with three different approaches,all containing the same key ingredient:the existence of maximal subgroups with infinite index.We also show that point stabilizer subgroups for every faithful,4-transitive action on an infinite set give rise to maximal von Neumann subalgebras.By combining this with the known results on constructing faithful,highly transitive actions,we get many maximal von Neumann subalgebras arising from maximal subgroups with infinite index.