期刊文献+
共找到1,079篇文章
< 1 2 54 >
每页显示 20 50 100
Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize 被引量:45
1
作者 Hongguang Cai Wei Ma +6 位作者 Xiuzhi Zhang Jieqing Ping Xiaogong Yan Jianzhao Liu Jingchao Yuan Lichun Wang Jun Ren 《The Crop Journal》 SCIE CAS 2014年第5期297-307,共11页
A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ... A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments. 展开更多
关键词 Spring MAIZE subsoil TILLAGE Root morphology Grain yield NUTRIENT ACCUMULATION
下载PDF
Effects of Subsoiling on Soil Moisture Under No-Tillage for Two Years 被引量:32
2
作者 QIN Hong-ling GAO Wang-sheng +4 位作者 MA Yue-cun MA Li YIN Chun-mei CHEN Zhe CHEN Chun-lan 《Agricultural Sciences in China》 CAS CSCD 2008年第1期88-95,共8页
In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for ... In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for 2 years was operated from 2005 to 2006. Based on the data of the soil moisture and crop yield, the physical basis of subsoiling for water conservation and yield increase was analyzed. The results showed that the soil water storage under subsoiling, from the soil surface to a depth of 100 cm was more than that under no-tillage for the growth season. In the 0-100 cm soil depth, the soil moisture in 50-100 cm depth under subsoiling was more compared with no-tillage, which increased when it's drought and decreased when it's rainy with the increase in soil depth. Compared with no-tillage, subsoiling could reduce the water consumption of oats in the 0-50 cm depth and increase the water consumption in the 50-100 cm depth. Also, subsoiling increased the yield by 18.29% and the water use efficiency by 16.8% in a two-year average. The effects of subsoiling on water conservation and yield increase were affected by precipitation, and a well-proportioned rainfall was better to increase yield and water use efficiency. Meanwhile, subsoiling decreased bulk density, which increased with the available precipitation. Subsoiling under no-tillage is the effective rotation tillage to contain more soil moisture and improve water use efficiency in ecotone of North China. 展开更多
关键词 NO-TILLAGE subsoilING water conservation yield increasing
下载PDF
Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain 被引量:20
3
作者 TAO Zhi-qiang SUI Peng +5 位作者 CHEN Yuan-quan LI Chao NIE Zi-jin YUAN Shu-fen SHI Jiang-tao GAO Wang-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2179-2188,共10页
High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were intr... High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were introduced to enhance the ability of spring maize to resist HTS during the filling stage.The field experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County,Hebei Province,China.Compared with rotary tillage(RT),the net photosynthetic rate,stomatal conductance,transpiration rate,and chlorophyll relative content(SPAD) of maize leaves was increased by 40.0,42.6,12.8,and 29.7% under SS,and increased by 20.4,20.0,5.4,and 14.2% under R,repectively.However,the treatments reduce the intercellular CO 2 concentration under HTS.The SS and R treatments increased the relative water content(RWC) by 11.9 and 6.2%,and the water use efficiency(WUE) by 24.3 and 14.3%,respectively,compared with RT.The SS treatment increased the root length density and soil moisture in the 0-80 cm soil profile,whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil profile compared with the RT treatment.Compared with 2011,the number of days with temperatures 33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012,whereas the plant yield decreased by 2.5,8.5 and 10.9%,the net photosynthetic rate reduced by 7.5,10.5 and 18.0%,the RWC reduced by 3.9,5.6 and 6.2%,and the WUE at leaf level reduced by 1.8,5.2 and 13.1% in the SS,R and RT treatments,respectively.Both the root length density and the soil moisture also decreased at different levels.The yield,photosynthetic rate,plant water status,root length density,and soil moisture under the SS and R treatments declined less than that under the RT treatment.The results indicated that SS and R can enhance the HTS resistance of spring maize during the filling stage,and led to higher yield by directly improving soil moisture and root growth and indirectly improving plant water status,photosynthesis and grain filling.The study can provide a theoretical basis for improving yield of maize by adjusting soil tillage in the NCP. 展开更多
关键词 high temperature stress spring maize filling stage subsoilING ridge tillage
下载PDF
Effects of subsoiling depth,period interval and combined tillage practice on soil properties and yield in the Huang-Huai-Hai Plain,China 被引量:11
4
作者 WANG Yun-xia CHEN Shu-ping +4 位作者 ZHANG Dong-xing YANG Li CUI Tao JING Hui-rong LI Yu-huan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第6期1596-1608,共13页
Compact!on layers are widely distributed in the Huang-Huai-Hai Plain,China,which restrict root growth and reduce yields.The adoption of subsoiling has been recommended to disrupt compacted soil layers and create a rea... Compact!on layers are widely distributed in the Huang-Huai-Hai Plain,China,which restrict root growth and reduce yields.The adoption of subsoiling has been recommended to disrupt compacted soil layers and create a reasonable soil structure for crop development.In this paper,the effects of subsoiling depth(30,35 and 40 cm),period interval(2 or 3 years)and combined pre-sowing tillage practice(rotary cultivation or ploughing)on soil condition improvement was studied on a tidal soil in the Huang-Huai-Hai Plain.Seve n tillage patter ns were desig ned by combini ng differe nt subsoili ng depths,period intervals and pre-sowing.The evaluation indicators for soil condition improvement were as follows:thickness of the plough layer and hard pan,soil bulk density,cone index,soil three-phase R values,alkali nitrogen content,crop yield,and economic ben efits.The results showed that subsoiling can sign ificantly improve the soil structure and physical properties.In all subsoiling treatments,the depth of 35 or 40 cm at a 2-year interval was the most significant.The thickness of the plough layer in creased from 13.67 cm before the test to 21.54-23.45 cm in 2018.The thick ness of the hard pan decreased from 17.68 cm before the test to 12.09-12.76 cm in 2018,a decrease of about 40.07%.However,the subsoiling combined presowing tillage practice,that is,rotary cultivation or ploughing,was not significant for soil structure and physical properties.For all subsoiling treatments,the soil bulk density,cone index and soil three-phase R values of the 15-25 cm soil layer were significantly lower compared to single rotary cultivation.Subsoiling was observed to increase the soil alkaline nitrogen and water conte nts.The tillage patter ns that had subsoiling at the depth of 35-40 cm at a 2-year in terval combi ned with rotary cultivation had the highest alkali nitrogen and water contents,which increased by 31.08-34.23%compared with that of the single rotary cultivati on.Subsoiling can sign ifica ntly in crease the yield both of wheat and corn,as well as the economic ben efits.The treatment of subsoili ng at the depth of 35 cm at an interval of 2 years com bined with rotary cultivation had the highest ann ual yield and economic benefits.For this treatme nt,the arinual yield and economic ben efits in creased by 14.55 and 62.87%in 2018,respectively.In con clusi on,the tillage patter ns that involved subsoili ng at a depth of 35 cm at a 2-year interval along with rotary cultivation are suitable for the Huang?Huai-Hai Plain. 展开更多
关键词 subsoilING PERIOD INTERVAL soil properties CROP YIELD Huang-Huai-Hai Plain
下载PDF
Alleviation of Subsoil Acidity of Red Soil in Southeast China with Lime and Gypsum *1 被引量:1
5
作者 SUNBO R.MOREAU 《Pedosphere》 SCIE CAS CSCD 1998年第2期113-120,共8页
Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay ... Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay in Southeast China is discussed in this paper. Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH 4, but lime addition had a contrary effect. Generally, application of lime and/or gypsum has little effect on soil electrical properties. Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth. The effect of lime reached only to 5 cm below its application layer. With leaching, Ca transferred from top soil to subsoil and decreased exchangeable Al in subsoil. Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K. 展开更多
关键词 alleviation GYPSUM LIME red soil subsoil acidity
下载PDF
Ultimate Bearing Capacity of Subsoils to Marine Pipelines
6
作者 Yan Chi, Zhang Jianguo and Yan Shuwang Lecturer, Dept. of Hydraulic Eng., Tianjing University, Tianjin 300072 Professor, Dept. of Hydraulic Eng., Tianjing University, Tianjin 300072 《China Ocean Engineering》 SCIE EI 1994年第4期483-492,共10页
Based on the theory of limit analysis, the Finite Difference Method (FDM) is established for evaluating the ultimate bearing capacity of subsoils to bear the unburied pipelines. The analytical results of bearing capac... Based on the theory of limit analysis, the Finite Difference Method (FDM) is established for evaluating the ultimate bearing capacity of subsoils to bear the unburied pipelines. The analytical results of bearing capacity of the ideal clay is given. The approach to bearing capacity evaluation of cohesionless subsoils without surcharge is suggested. The results from this method are consistent with those obtained from model tests. 展开更多
关键词 limit analysis finite difference method ultimate bearing capacity ideal clay cohesionless subsoil
下载PDF
Overview of Current Research Situations of Subsoiler
7
作者 Shengbao GAN Xirui ZHANG Yue LI 《Asian Agricultural Research》 2014年第8期93-97,100,共6页
Modern subsoiling technology is a little ploughing measure in dry land protective farming technology system.The subsoiler can scarify soil,deepen the arable layer,break the plough layer,improve the soil permeability,i... Modern subsoiling technology is a little ploughing measure in dry land protective farming technology system.The subsoiler can scarify soil,deepen the arable layer,break the plough layer,improve the soil permeability,increase soil infiltration speed and amount,and create an arable layer structure with coexistence of fictional and real situation.Also,it can effectively promote development and growth of crop root system and play a favorable role in drought resistance and yield increase of crops.This paper made a simple overview of the subsoiling technology,current development situation of subsoiler both at home and abroad,and classification of subsoilers. 展开更多
关键词 Protective FARMING subsoilER DEVELOPMENT and growt
下载PDF
Effects of Subsoiling on Some Soil Physical Properties and Wheat Yield in a Dry Land Ecological Condition
8
作者 S. Afzalinia A. A. Solhjou I. Eskandari 《Journal of Agricultural Science and Technology(A)》 2011年第6期842-847,共6页
In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid dow... In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid down in the form of a complete block experimental design with four treatments and four replications for three years. Treatments included: (1) conventional tillage without using subsoiler which was control treatment (So); (2) using subsoiler with the shank space of 40 cm which was equal to the subsoiling depth (SO; (3) using subsoiler with the shank space of 60 cm which was 1.5 times of the subsoiling depth (S2); and (4) using subsoiler with the shank space of 80 cm which was 2 times of the subsoiling depth (S3). Subsoiling depth was set at 40 cm which was the lower limit of the hard pan depth in the soil. Soil cone index, soil bulk density, soil moisture content, wheat yield, and yield components were measured in this study and SAS software was used to analyze the collected data. Results showed that subsoiling decreased the soil bulk density and cone index, and increased water retention of the soil. Results also revealed that applying subsoiler increased wheat yield and yield components in our dry land conditions. Since subsoiling improved soil physical conditions and increases wheat yield, applying subsoiler in such a dry land conditions is therefore recommended. Results of this study also showed that subsoiling with the shank space of 40 cm and 60 cm had better performance compared to the shank space of 80 cm. On the other hand, shank space of 40 cm reduced the subsoiler effective working width and consequently effective field capacity. Therefore, subsoiler with a shank space of 60 cm is recommended for application in dry land soils of our type. 展开更多
关键词 subsoilING soil physical properties dry land conditions wheat yield.
下载PDF
Denitrification Rate and Controlling Factors for Accumulated Nitrate in the Deep Subsoil of Intensive Farmlands: A Case Study in the North China Plain 被引量:5
9
作者 YUAN Haijing QIN Shuping +3 位作者 DONG Wenxu HU Chunsheng Kiril MANEVSKI LI Xiaoxin 《Pedosphere》 SCIE CAS CSCD 2019年第4期516-526,共11页
Denitrification in subsoil(to a depth of 12 m) is an important mechanism to reduce nitrate(NO3^-) leaching into groundwater.However, regulating mechanisms of subsoil denitrification, especially those in the deep subso... Denitrification in subsoil(to a depth of 12 m) is an important mechanism to reduce nitrate(NO3^-) leaching into groundwater.However, regulating mechanisms of subsoil denitrification, especially those in the deep subsoil beneath the crop root zone, have not been well documented. In this study, soil columns of 0–12 m depth were collected from intensively farmed fields in the North China Plain. The fields had received long-term nitrogen(N) fertilizer inputs at 0(N0), 200(N200) and 600(N600) kg N ha^-1 year^-1. Main soil properties related to denitrification, i.e., soil water content, NO3^-, dissolved organic carbon(DOC), soil organic carbon(SOC),pH, denitrifying enzyme activity(DEA), and anaerobic denitrification rate(ADR), were determined. Statistical comparisons among the treatments were performed. The results showed that NO3^- was more heavily accumulated in the entire soil profile of the N600 treatment, compared to the N0 and N200 treatments. The SOC, DOC, and ADR decreased with increasing soil depth in all treatments,whereas considerable DEA was observed throughout the subsoil. The long-term fertilizer rates affected ADR only in the upper 4 m soil layers. The ADRs in the N200 and N600 treatments were significantly correlated with DOC. Multiple regression analysis indicated that DOC rather than DEA was the key factor regulating denitrification beneath the root zone. Additional research is required to determine if carbon addition into subsoil can be a promising approach to enhance NO3^- denitrification in the subsoil and consequently to mitigate groundwater NO3^- contamination in the intensive farmlands. 展开更多
关键词 denitrifying enzyme activity dissolved ORGANIC CARBON NITRATE leaching soil ORGANIC CARBON subsoil DENITRIFICATION
原文传递
Distinct element method analysis and field experiment of soil resistance applied on the subsoiler 被引量:11
10
作者 Li Bo Liu Fanyi +2 位作者 Mu Junying Chen Jun Han Wenting 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第1期54-59,共6页
Since the design of the subsoiler is a complex work,the interaction between the subsoiler and soil was investigated by using Distinct Element Method(DEM)in this study.Based on the traditional discrete element theory,t... Since the design of the subsoiler is a complex work,the interaction between the subsoiler and soil was investigated by using Distinct Element Method(DEM)in this study.Based on the traditional discrete element theory,the 3D model of soil particles and the subsoiler were established after considering the liquid bridge force between soil particles.The operating resistance curves of the subsoiler were achieved after the DEM simulation at a speed of 1 m/s,and three depths of 180 mm,220 mm and 260 mm,respectively.The simulation curves agreed well with the field experimental results based on relative errors of 2.96%,14.95%and 7.15%,respectively,at three depths.All these data proved that it was feasible and favorable to analyze the performance of the subsoiler by using the DEM and it is of important significance for studying and further optimizing the structure of the subsoiler. 展开更多
关键词 distinct element method(DEM) parallel bond subsoilER MODELING SIMULATION
原文传递
Determination of the draft force for different subsoiler points using discrete element method 被引量:6
11
作者 Li Bo Xia Rui +3 位作者 Liu Fanyi Chen Jun Han Wenting Han Bing 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第3期81-87,共7页
Generally,a subsoiler is comprised of a shank and a point.The point shape has a significant effect on the draft force of a subsoiler.In this study,the draft force of subsoilers with four different points were compared... Generally,a subsoiler is comprised of a shank and a point.The point shape has a significant effect on the draft force of a subsoiler.In this study,the draft force of subsoilers with four different points were compared under the speed of 0.8 m/s and the depth of 350 mm in the soil bin.Discrete Element Method(DEM)was applied in simulating the working process of the subsoiler.The stiffness of soil particles used in DEM was calibrated by comparing the simulated draft force of a standard arc-shaped subsoiler with the experiment.The calibrated soil particle stiffness was 1.1×104 N/m.The validated model was then used to compare the draft force of subsoilers with four different points under the same condition in the test.Results showed that different points would cause different draft forces.The subsoiler with short chisel point caused the smallest draft force(2885 N)while the point with short face and wings had the largest force(4474 N).The relative errors of the simulated results were less than 4%,which proved that DEM was an effective way for predicting the draft force of subsilers.The velocity field and contact force filed could show the movement of soil around the subsoiler. 展开更多
关键词 subsoilER point shape draft force chisel point DEM conservation tillage
原文传递
Factors affecting trace element content in periurban market garden subsoil in Yunnan Province,China 被引量:3
12
作者 Yanqun zu Laurent Bock +2 位作者 Christian Schvartz Gilles Colinet Yuan Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第3期488-496,共9页
Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was... Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn ≥1.0) and Cd and Cu in subsoil (RTS of Cd and Cu≤1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M 〉 T 〉 L), except for Cu (T 〉 M 〉 L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice. 展开更多
关键词 trace elements subsoil TOPSOIL relationships
原文传递
Design and experiment of a bionic vibratory subsoiler for banana fields in southern China 被引量:5
13
作者 Zhang Xirui Wang Chao +1 位作者 Chen Zhishui Zeng Zhiwei 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第6期75-83,共9页
Subsoiling is essential in the tillage of banana planting,as banana plants have a fairly sturdy pseudostem and wide row spacing while soil tends to be compacted.In this study,a bionic vibrating subsoiler for banana fi... Subsoiling is essential in the tillage of banana planting,as banana plants have a fairly sturdy pseudostem and wide row spacing while soil tends to be compacted.In this study,a bionic vibrating subsoiler for banana fields was developed,verified,and evaluated.The vibrator was designed based on crank-rocker mechanism while the bionics design was used for subsoiler development.The forces on the susboiler were analyzed to verify the strength of the subsoiler tine.To test the performance of the subsoiler,field tests were conducted to measure the draft force and fuel consumption.There was approximately 14%reduction in the draft force and 22%increase in the fuel consumption in vibrating mode compared with that in non-vibrating mode.In conclusion,the study results could be applied in China’s tropical agricultural regions. 展开更多
关键词 vibratory subsoiler TILLAGE simulation BIONICS banana field
原文传递
Design and experiment of anti-vibrating and anti-wrapping rotary components for subsoiler cum rotary tiller 被引量:4
14
作者 Kan Zheng Allen D.McHugh +7 位作者 Hongwen Li Qingjie Wang Caiyun Lu Hongnan Hu Wenzheng Liu Zhiqiang Zhang Peng Liu Jin He 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第4期47-55,共9页
The commonly used subsoiling cum rotary tiller machine(SRT)in Northern China is a combination of subsoiler and horizontal rotary tiller,however backfilling of the subsoiling slot,excessive vibration and plant residue ... The commonly used subsoiling cum rotary tiller machine(SRT)in Northern China is a combination of subsoiler and horizontal rotary tiller,however backfilling of the subsoiling slot,excessive vibration and plant residue wrapping on rotary components has been rarely considered.Therefore,the rotary components and assembly were redesigned to address these issues and to an SRT fitted with IT225 short curve rotary blades behind the V-shape subsoiling slots and IIT245 long curve rotary blades between the tines.Long and short blades were fitted on a rotor in a double helix,with optimal spiral angles of 65° and 90°,and phase angle of 147°and 180°,respectively.Compared with the commonly used SRT(CSRT),the additional anti-wrapping cutting blades in the circumferential and axial direction of ASRT could remove hanging residue on the blade holders,wrapping on the rotor and formation of an isolation layer.Moreover,the cutting edge curve of anti-wrapping cutting blades was an exponential curve.Field tests demonstrated that the redesigned SRT with anti-vibrating and anti-wrapping rotary components(ASRT)had was a significant advancement over the CSRT.Moreover,the working depth of rotary tillage was more stable,while other observations confirmed that backfilling of the subsoiling slot was also improved. 展开更多
关键词 subsoilING rotary tiller ANTI-VIBRATION anti-wrapping backfill tillage
原文传递
Discrete element simulations and experiments of soil-winged subsoiler interaction 被引量:4
15
作者 Xuezhen Wang Peng Li +2 位作者 Jinpu He Wuquan Wei Yuxiang Huang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第1期50-62,I0001,共14页
Understanding soil disturbance behaviors under the impact of the winged subsoiler is critical for designing or optimizing the winged subsoiler(a primary subsoiling tool).In this study,a soil-winged subsoiler interacti... Understanding soil disturbance behaviors under the impact of the winged subsoiler is critical for designing or optimizing the winged subsoiler(a primary subsoiling tool).In this study,a soil-winged subsoiler interaction model was developed and the effects of winged subsoiler on soil disturbance behaviors were investigated using the discrete element method(DEM)simulations and lab soil-bin tests.The results showed that wings mainly affected the disturbance range and fragmentation degree of soil above them.The draught forces of share section(SS),arc section in the hardpan(ASHP),arc section in the top layer(ASTL)and line section(LS)were accounted for 69.53%,25.22%,4.73%and 0.52%of the total draught force of winged subsoiler;the lateral disturbance range from high to low of the soil at different depths followed the ranking:top layer(TL),hardpan disturbed by arc section(HDAS)and hardpan disturbed by share section(HDSS).Wings had the greatest influence on the draught force of ASHP.Adding wings to an arc-shaped subsoiler increased the disturbance areas of HDAS,TL and HDSS by 47.52%,7.74%and 4.59%,respectively,but meanwhile increased the total draught force by 36%.Compared with a non-winged subsoiler,winged subsoiler had higher soil looseness(15.83%),soil disturbance coefficient(58.59%),furrow width(448.65 mm)and soil disturbance area ratio(0.3835),but poorer soil surface flatness(19.79 mm)and lower soil loosening efficiency(39.35 mm²/N).This study provided critical information for optimizing winged subsoilers on aspects of improving soil loosening effectiveness and reducing draught force. 展开更多
关键词 HARDPAN winged subsoiler draught force soil disturbance discrete element method(DEM) experiment
原文传递
Optimized design and field experiment of a staggered vibrating subsoiler for conservation tillage 被引量:4
16
作者 Yunxia Wang Abdalla N Osman +3 位作者 Dongxing Zhang Li Yang Tao Cui Xiangjun Zhong 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第1期59-65,共7页
Soil compaction is a common problem facing conservation fields that restricts crop root growth and causes yield decrease.Subsoil techniques have been developed to break up the compaction layer.However,subsoil implemen... Soil compaction is a common problem facing conservation fields that restricts crop root growth and causes yield decrease.Subsoil techniques have been developed to break up the compaction layer.However,subsoil implement requires large draft power that hampered the development of subsoil techniques for most of developing countries due to lack of large scale tractors.Aiming to optimize the penetration resistance of the subsoiler and create a good working environment for the operators,a staggered vibrating subsoiler was developed.A new staggered vibrating mechanism was designed to generate the staggered vibration of the shanks meanwhile the V-shape shanks arrangement was adopted to keep relative balance for the subsoiler.In order to obtain optimum working parameters of the vibration frequency and forward speed,the trajectory of shanks was simulated by using the MATLAB software.The forward speed of 2-3 km/h with vibration frequency of 12 Hz was recommended to acquire an effective decrease in draft force.Field performance of this subsoiler was evaluated in terms of the draft force,power requirement and tractor wheel slippage.By comparing the two operation modes,staggered vibrating(SV)and rigid(NV)of shanks,the decrease ratios of draft force for SV were determined by 16.97%,12.12%and 9.02%at forward speeds of 2.2 km/h,2.6 km/h and 3.1 km/h,respectively.This is better than the research for the 1SZ-460 vibratory subsoiler that was decreased by 9.09%in draft force.The power requirement for SV was not significantly greater than that for NV.The obviously decreased wheel slippage was observed for SV by decrease of 12.47%,17.96%and 21.79%at forward speeds of 2.2 km/h,2.6 km/h and 3.1 km/h,respectively.In conclusion,the staggered vibrating subsoiler presents preferable working performance and is recommended to be applied in subsoil tillage process for developing countries. 展开更多
关键词 vibrating subsoiler staggered vibrating mechanism V-shape arrangement field experiment
原文传递
Effects of subsoiling on working quality and total power consumption of high stubble straw returning machine 被引量:2
17
作者 Hua Zhou Jumin Zhang +3 位作者 Junfang Xia H.M.Tahir Yinghao Zhu Chunling Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第4期56-62,共7页
Straw returning into field is a direct and effective measure to reduce the straw burning and improve the soil organic matter content.Straw returning directly to field needs higher performance machines,especially under... Straw returning into field is a direct and effective measure to reduce the straw burning and improve the soil organic matter content.Straw returning directly to field needs higher performance machines,especially under the condition of large amount of straw in the field is more difficult.Therefore,the model of conservation tillage by combination of subsoiling and straw returning was studied.Experiments on combined tillage machine for effect of subsoiling on working quality and total power consumption for high stubble straw returning were carried out.The high stubble rape field was used as the test field;forward speed and PTO speed of tractor were taken as the test factors.Straw coverage rate and straw proportion of the lower half burying layer were taken as the test indexes of the working quality.Subsoiling and rotary burying(SRB)returning operation was used as experimental group and direct rotary burying(DRB)returning operation was the control group.The results showed that under different working conditions,the mean value of straw coverage rate of SRB was 93.0%,straw proportion of the lower half burying layer was 52.8%,these values were better than DRB.The straw proportion of the lower half burying layer of SRB compared with DRB increased by 10.5%.Two factors all had a significant effect on it under the SRB and DRB conditions.Subsoiling could significantly reduce the PTO torque.Under low speed,the total power consumption of SRB was slightly smaller,while under high speed,the total power consumption of DRB was slightly smaller.Under the SRB and DRB conditions,two factors both had a significant effect on total power consumption.The optimal working combination(working quality as the primary index)was 1.5 km/h of forward speed and 720 r/min of PTO speed.Under this condition,the straw coverage rate was 94.1%,the straw proportion of the lower half burying layer was 59.0%,and the total power consumption was 35.62 kW.The research confirmed that subsoiling is beneficial to the working quality and total power consumption of high stubble straw returning machine.It could meet the working requirements,and provide a reference for optimizing straw returning machine and improving working quality. 展开更多
关键词 agricultural machinery CULTIVATION subsoilING straw returning working quality total power consumption
原文传递
Simulation and experimental study on drag reduction and anti-adhesion of subsoiler with bionic surface 被引量:2
18
作者 Jiping Niu Tongyun Luo +4 位作者 Jiaqing Xie Haoxuan Cai Zhikang Zhou Jun Chen Shuo Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第4期57-64,共8页
A new subsoiler with placoid scale microstructure bionic surface was proposed which mimicked shark skin to reduce tillage resistance and soil adhesion during subsoiling cultivation.The contour curves of placoid scale ... A new subsoiler with placoid scale microstructure bionic surface was proposed which mimicked shark skin to reduce tillage resistance and soil adhesion during subsoiling cultivation.The contour curves of placoid scale microstructure on shark skin were fitted,and two kinds of bionic subsoiler with continuous and discontinuous microstructures were designed and fabricated,respectively.The effects of different bionic surfaces on tillage resistance were investigated by finite element simulation and experiment.The results indicated that the bionic subsoiler with discontinuous microstructure reduced the horizontal and vertical force by 21.3%and 24.8%,respectively.The subsoiler with discontinuous microstructure surface can prevent the adhesion between the soil and subsoiler surface more efficiently. 展开更多
关键词 drag reduction ANTI-ADHESION subsoilER bionic surface placoid scale microstructure finite element simulation
原文传递
Design and experiment of a subsoiling variable rate fertilization machine 被引量:1
19
作者 Jiangtao Qi Xinliang Tian +4 位作者 Yang Li Xuhui Fan Hongfang Yuan Jiale Zhao Honglei Jia 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第4期118-124,共7页
In order to improve soil fertility and fertilizer utilization,a subsoiling variable rate fertilization machine based on conservation tillage and precision agriculture was designed and tested.The relationship between s... In order to improve soil fertility and fertilizer utilization,a subsoiling variable rate fertilization machine based on conservation tillage and precision agriculture was designed and tested.The relationship between suspension parameters and penetrating distance was analyzed,and a matching model between fertilizing quantity and penetrating distance was established.The variable rate fertilization control machine was developed based on an Advantech PCM-9363 industrial control mainboard.The machine operates under two patterns:DGPS-based positioning and straight-line path positioning based on a planar coordinate system.This machine can perform on-demand fertilization according to the spatial differences in soil nutrients and the prescription maps pre-set before the operation.Field experiments showed the machine has a subsoiling stability of 92.5%,a soil breaking rate of 61.1%,a maximum positioning relative error of 2.68%and a maximum variable rate fertilization error of 3.89%.The subsoiling performance and variable rate fertilization indices of this machine satisfy the requirements of GB/T24675.2-2009.The tested indices meet the national and industrial standards and satisfy the design requirements.The findings of the research can be used as the structural design of the subsoiling variable rate fertilization machine. 展开更多
关键词 agricultural machinery conservation tillage precision agriculture subsoilING variable rate fertilization
原文传递
Performance evaluation of cone penetrometer device for measuring the subsoil compaction in mulched plots 被引量:1
20
作者 R.Thiyagarajan G.C.Jayashree +1 位作者 A.P.Mohankumar P.Vijayakumary 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2013年第3期19-27,共9页
Soil exhibits layers of extreme compaction from both natural causes and wheel traffic.These compaction layers impede root growth,thereby reducing the plants capacity to obtain water during drought.Subsoil tillage is a... Soil exhibits layers of extreme compaction from both natural causes and wheel traffic.These compaction layers impede root growth,thereby reducing the plants capacity to obtain water during drought.Subsoil tillage is a remedy for adverse soil compaction that results in improved conditions for crop growth.Mechanical disturbance of subsoil increases water holding capacity and reduces impedance to root penetration.Vertical mulching is a technique that can be used to partially alleviate soil compaction within the critical root zones of deep rooted crops.A study was conducted by placing raw and composted coir pith using a two row subsoil coir pith mulching machine in three different soil depths(250,350,and 450 mm)at the three application rates of 15 t/ha,20 t/ha,and 25 t/ha and the effect of soil strength was investigated.The experiment was conducted for a rainfed cotton crop.The soil strength profile was recorded in all the treatments.The cone penetrometer resistance was measured for each increment of 10 mm and recorded manually from a digital force indicator during maturity stages of crop in all the treatment plots.The cone penetrometer resistance was measured directly on the row and the cone index was computed.Deep placement of mulch reduced the soil strength as compared to shallow placement.The lower soil strength(0.5 kPa to 0.8 kPa)in the loosened and mulched zone provided an impedance free zone for the root to proliferate.The rapid increase in cone index values at depths immediately below the respective depth of placement(250,350 and 450 mm)of raw and composted coir pith mulch indicated that the existence of undisturbed soil profile below the mulched zone which could be potential limiting factor for root development. 展开更多
关键词 soil strength raw coir pith composted coir pith cone penetrometer cone index subsoil compaction
原文传递
上一页 1 2 54 下一页 到第
使用帮助 返回顶部