Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading patterns of subsurface ocean temperature anomalies (SOTA) a...Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading patterns of subsurface ocean temperature anomalies (SOTA) and the corresponding atmospheric circulation structure in the Pacific Ocean (20°S-60°N). In this paper, the evolution of North Pacific SOTA associated with El Nifio-southern oscillation (ENSO), and their relationship with the overlying zonal/meridional atmospheric circulations were elucidated. The results indicate that: (1) there are two dominant modes for the interannual variability of the North Pacific SOTA. The primary mode is the dipole pattern of the central and western North Pacific SOTA associated with the leading mode of ENSO, and the second mode is the zonal pattern related to the second mode of ENSO. These two modes consist of the temporal-spatial variation of the SOTA in the North Pacific. (2) During the developing phase of the El Nifio event, positive (negative) SOTA appears in the western (central) portion of the North Pacific Ocean. During the mature and decaying phase of the E1 Nifio event, the western positive center and the central negative center continue to be maintained and enhanced. Meanwhile, the position of the western positive center slightly changes, and the central negative center moves eastward slowly. After the El Nifio event vanishes, the positive SOTA disappears, and the central negative SOTA becomes weak and remains in the northeastern Pacific Ocean. The results for La Nifia are generally the opposite. (3) During the El Nifio/La Nifia cycle, formation and evolution of the SOTA, with opposite signs in central and western North Pacific Ocean, resulted from vertical movement of the two northern branches of the Hadley Cell with opposite direction, as well as the positive feedback of the air-sea interaction induced by dynamic processes in the mid-latitudes. The former gives rise to the initial SOTA, and the latter intensifies SOTA. Under the forcing of these two processes, SOTA evolution is formed and sustained during the El Nino/La Nina events. Also discussed herein as background for the ENSO cycle are the possible connections among the West Pacific subtropical high, the strength of the Kuroshio near the East China Sea, the Kuroshio meanders south of Japan, the Aleutian Low, and cold advection in the central North Pacific Ocean.展开更多
Based on the simple ocean data assimilation(SODA) reanalysis dataset from the University of Maryland and the method of Empirical Orthogonal Functions(EOF),the characteristics of interannual and interdecadal variabilit...Based on the simple ocean data assimilation(SODA) reanalysis dataset from the University of Maryland and the method of Empirical Orthogonal Functions(EOF),the characteristics of interannual and interdecadal variabilities of the equatorial Pacific subsurface oceanic temperature anomaly(SOTA) are captured.The first and second modes of the equatorial Pacific SOTA in the interannual and interdecadal variations are found respectively and the effect of the second mode on the ENSO cycle is discussed.Results show that the first mode of SOTA's interannual and interdecadal variabilities exhibit a dipole pattern,indicating that the warm and cold temperature anomalies appear simultaneously in the equatorial subsurface Pacific.The second mode shows coherent large-scale temperature anomalies in the equatorial subsurface Pacific,which is a dominant mode in the evolution of ENSO cycle.The temporal series of the second mode has a significant lead correlation with the Ni?o-3.4 index,which can make a precursory prediction signal for ENSO.The function of this prediction factor in SOTA is verified by composite and case analyses.展开更多
The relationships between the evolution of two types of El Ni?o events and the subsurface ocean temperature anomaly(SOTA) in the equatorial Pacific are compared in this study. The results show that both types of El Ni...The relationships between the evolution of two types of El Ni?o events and the subsurface ocean temperature anomaly(SOTA) in the equatorial Pacific are compared in this study. The results show that both types of El Ni?o are negatively correlated to the SOTA in the equatorial western Pacific, but relationships are different in different phases of El Ni?o. Furthermore, the occurrence of different types of El Ni?o is related to different features of the equatorial thermocline, e.g. its zonal gradient, significant variation area, amplitude and duration of thermocline oscillation. The propagation of SOTA in the equator plays an important role during the evolution of both types of El Ni?o, but shows dramatic differences in intensity, duration and phase reverse of warm SOTA. Moreover, the pathways of SOTA signal are different between these two types of El Ni?o. The dominant pathway in the life cycle of Eastern Pacific(EP)-El Ni?o lies on the equator and to its north, but there is no loop to the south of the equator. In contrast, the dominant pathway in Central Pacific(CP)-El Ni?o is located on the equator and to its south, and the propagation signal of SOTA to the north of the equator is very weak.The relationships between the zonal wind anomalies and the two types of El Ni?o are also preliminarily discussed. It is shown that EP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial central and western Pacific, while CP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial western Pacific and need the cooperation of easterly anomalies over the equatorial eastern Pacific to certain extent.展开更多
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the E1 Nifio-Southern Oscilla...The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the E1 Nifio-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of E1Nifio, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of E1 Nifio, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Nifm event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.展开更多
Oceanic general circulation models have become an important tool for the study of marine status and change. This paper reports a numerical simulation carried out using LICOM2.0 and the forcing field from CORE. When co...Oceanic general circulation models have become an important tool for the study of marine status and change. This paper reports a numerical simulation carried out using LICOM2.0 and the forcing field from CORE. When compared with SODA reanalysis data and ERSST.v3 b data, the patterns and variability of the tropical Pacific–Indian Ocean associated mode(PIOAM) are reproduced very well in this experiment. This indicates that, when the tropical central–western Indian Ocean and central–eastern Pacific are abnormally warmer/colder, the tropical eastern Indian Ocean and western Pacific are correspondingly colder/warmer. This further confirms that the tropical PIOAM is an important mode that is not only significant in the SST anomaly field, but also more obviously in the subsurface ocean temperature anomaly field. The surface associated mode index(SAMI) and the thermocline(i.e., subsurface) associated mode index(TAMI) calculated using the model output data are both consistent with the values of these indices derived from observation and reanalysis data. However, the model SAMI and TAMI are more closely and synchronously related to each other.展开更多
In this study,two possible persistent anomalies of the Madden-Julian Oscillation mode(MJO) are found in the summer season(persistently Pacific active and Indian Ocean active),and an index is set to define the intensit...In this study,two possible persistent anomalies of the Madden-Julian Oscillation mode(MJO) are found in the summer season(persistently Pacific active and Indian Ocean active),and an index is set to define the intensity of the two modes.They are proved to have high statistical correlations to the later ENSO events in the autumn and winter seasons:When persistent anomaly of MJO happens in the Pacific Ocean in summer,El Nino events are often induced during the autumn and winter seasons of that year.However,during the other MJO mode when the summer persistent anomaly of MJO occurs in the Indian Ocean,La Nina events often follow instead.The analysis of the atmospheric circulation field indicates that persistent anomaly of MJO can probably affect the entire Equatorial Pacific circulation,and results in wind stress anomalies.The wind stress anomalies could excite warm or cold water masses which propagate eastwards at the subsurface ocean.The accumulation of warm or cold subsurface water in the Equatorial Eastern Pacific Ocean may eventually lead to the formation of an ENSO.展开更多
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)the National Basic Research Program of China (973 Program) (Nos. 2007CB411802 and 2006CB403601)
文摘Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading patterns of subsurface ocean temperature anomalies (SOTA) and the corresponding atmospheric circulation structure in the Pacific Ocean (20°S-60°N). In this paper, the evolution of North Pacific SOTA associated with El Nifio-southern oscillation (ENSO), and their relationship with the overlying zonal/meridional atmospheric circulations were elucidated. The results indicate that: (1) there are two dominant modes for the interannual variability of the North Pacific SOTA. The primary mode is the dipole pattern of the central and western North Pacific SOTA associated with the leading mode of ENSO, and the second mode is the zonal pattern related to the second mode of ENSO. These two modes consist of the temporal-spatial variation of the SOTA in the North Pacific. (2) During the developing phase of the El Nifio event, positive (negative) SOTA appears in the western (central) portion of the North Pacific Ocean. During the mature and decaying phase of the E1 Nifio event, the western positive center and the central negative center continue to be maintained and enhanced. Meanwhile, the position of the western positive center slightly changes, and the central negative center moves eastward slowly. After the El Nifio event vanishes, the positive SOTA disappears, and the central negative SOTA becomes weak and remains in the northeastern Pacific Ocean. The results for La Nifia are generally the opposite. (3) During the El Nifio/La Nifia cycle, formation and evolution of the SOTA, with opposite signs in central and western North Pacific Ocean, resulted from vertical movement of the two northern branches of the Hadley Cell with opposite direction, as well as the positive feedback of the air-sea interaction induced by dynamic processes in the mid-latitudes. The former gives rise to the initial SOTA, and the latter intensifies SOTA. Under the forcing of these two processes, SOTA evolution is formed and sustained during the El Nino/La Nina events. Also discussed herein as background for the ENSO cycle are the possible connections among the West Pacific subtropical high, the strength of the Kuroshio near the East China Sea, the Kuroshio meanders south of Japan, the Aleutian Low, and cold advection in the central North Pacific Ocean.
基金National Key Basic Research Program of China(2013CB956203)
文摘Based on the simple ocean data assimilation(SODA) reanalysis dataset from the University of Maryland and the method of Empirical Orthogonal Functions(EOF),the characteristics of interannual and interdecadal variabilities of the equatorial Pacific subsurface oceanic temperature anomaly(SOTA) are captured.The first and second modes of the equatorial Pacific SOTA in the interannual and interdecadal variations are found respectively and the effect of the second mode on the ENSO cycle is discussed.Results show that the first mode of SOTA's interannual and interdecadal variabilities exhibit a dipole pattern,indicating that the warm and cold temperature anomalies appear simultaneously in the equatorial subsurface Pacific.The second mode shows coherent large-scale temperature anomalies in the equatorial subsurface Pacific,which is a dominant mode in the evolution of ENSO cycle.The temporal series of the second mode has a significant lead correlation with the Ni?o-3.4 index,which can make a precursory prediction signal for ENSO.The function of this prediction factor in SOTA is verified by composite and case analyses.
基金supported by the National Basic Research Program of China (2013CB956203)
文摘The relationships between the evolution of two types of El Ni?o events and the subsurface ocean temperature anomaly(SOTA) in the equatorial Pacific are compared in this study. The results show that both types of El Ni?o are negatively correlated to the SOTA in the equatorial western Pacific, but relationships are different in different phases of El Ni?o. Furthermore, the occurrence of different types of El Ni?o is related to different features of the equatorial thermocline, e.g. its zonal gradient, significant variation area, amplitude and duration of thermocline oscillation. The propagation of SOTA in the equator plays an important role during the evolution of both types of El Ni?o, but shows dramatic differences in intensity, duration and phase reverse of warm SOTA. Moreover, the pathways of SOTA signal are different between these two types of El Ni?o. The dominant pathway in the life cycle of Eastern Pacific(EP)-El Ni?o lies on the equator and to its north, but there is no loop to the south of the equator. In contrast, the dominant pathway in Central Pacific(CP)-El Ni?o is located on the equator and to its south, and the propagation signal of SOTA to the north of the equator is very weak.The relationships between the zonal wind anomalies and the two types of El Ni?o are also preliminarily discussed. It is shown that EP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial central and western Pacific, while CP-El Ni?o is more likely to respond to the westerly anomalies over the equatorial western Pacific and need the cooperation of easterly anomalies over the equatorial eastern Pacific to certain extent.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)the CAS Strategic Priority Research Program (No. XDA05090404)the National Basic Research Program of China (973 Program) (No. 2012CB417401)
文摘The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the E1 Nifio-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of E1Nifio, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of E1 Nifio, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Nifm event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.
基金supported by the National Basic Research Program of China (Grant No. 2013CB956203)the National Natural Science Foundation of China (Grant Nos. 41490642 and 41575062)the Open Fund of LASG
文摘Oceanic general circulation models have become an important tool for the study of marine status and change. This paper reports a numerical simulation carried out using LICOM2.0 and the forcing field from CORE. When compared with SODA reanalysis data and ERSST.v3 b data, the patterns and variability of the tropical Pacific–Indian Ocean associated mode(PIOAM) are reproduced very well in this experiment. This indicates that, when the tropical central–western Indian Ocean and central–eastern Pacific are abnormally warmer/colder, the tropical eastern Indian Ocean and western Pacific are correspondingly colder/warmer. This further confirms that the tropical PIOAM is an important mode that is not only significant in the SST anomaly field, but also more obviously in the subsurface ocean temperature anomaly field. The surface associated mode index(SAMI) and the thermocline(i.e., subsurface) associated mode index(TAMI) calculated using the model output data are both consistent with the values of these indices derived from observation and reanalysis data. However, the model SAMI and TAMI are more closely and synchronously related to each other.
基金National Natural Science Foundation of China(41375059)National Public Welfare(Meteorological Sector)Special Project of China(GYHY201306022)
文摘In this study,two possible persistent anomalies of the Madden-Julian Oscillation mode(MJO) are found in the summer season(persistently Pacific active and Indian Ocean active),and an index is set to define the intensity of the two modes.They are proved to have high statistical correlations to the later ENSO events in the autumn and winter seasons:When persistent anomaly of MJO happens in the Pacific Ocean in summer,El Nino events are often induced during the autumn and winter seasons of that year.However,during the other MJO mode when the summer persistent anomaly of MJO occurs in the Indian Ocean,La Nina events often follow instead.The analysis of the atmospheric circulation field indicates that persistent anomaly of MJO can probably affect the entire Equatorial Pacific circulation,and results in wind stress anomalies.The wind stress anomalies could excite warm or cold water masses which propagate eastwards at the subsurface ocean.The accumulation of warm or cold subsurface water in the Equatorial Eastern Pacific Ocean may eventually lead to the formation of an ENSO.