期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Theoretical and experimental design in the study of sulfide-based solid-state battery and interfaces
1
作者 Hongjie Xu Yujie Su +4 位作者 Chenggong Zheng Yuchen Wang Yuping Tong Zhongzheng Yang Junhua Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期242-251,共10页
In recent years,due to the increasing demand for portable electronic devices,rechargeable solid-state battery technology has developed rapidly.Lithium-ion batteries are the systems of choice,offering high energy densi... In recent years,due to the increasing demand for portable electronic devices,rechargeable solid-state battery technology has developed rapidly.Lithium-ion batteries are the systems of choice,offering high energy density,flexible and lightweight design,and longer lifespan than comparable battery technologies.Therefore,a better understanding of the relationship between electrochemical mechanism and structural properties from theory and experiment will enable us to accelerate the development of high-performance and security batteries.This review discusses the interplay between theoretical calculation and experiment in the study of lithium ion battery materials.We introduce the application of theoretical calculation method in solid-state batteries through the combination of theory and experiment.We present the concept and assembly technology of solid-state batteries are reviewed.The basic parameters of solid-state electrolytes,especially sulfide-based solid-state electrolytes and their interface mechanisms with high-voltage cathode materials,are analyzed by theoretical methods.We present an overview on the scientific challenges,fundamental mechanisms,and design strategies for solid-state batteries,especially focusing on the issues of stability on solid-state electrolytes and the associated interfaces with both cathode and electrolyte.Owing to the theoretical models,we can not only reveal the unprecedented mechanism from the atomic scale,but also analyze the interface problems in the battery thoroughly,thus effectively designing more promising electrolyte and interface coating materials.It blazed a new trial for engineering an interphase with improved interfacial compatibility for a long-term cyclability. 展开更多
关键词 Theoretical simulation sulfide-based electrolytes All solid-state battery Cathode-electrolyte interface Interface compatibility
原文传递
Space Charge Layer Eff ect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution
2
作者 Wei He Lei Zhou +4 位作者 Muhammad Khurram Tufail Pengfei Zhai Peiwen Yu Renjie Chen Wen Yang 《Transactions of Tianjin University》 EI CAS 2021年第6期423-433,共11页
All-solid-state lithium batteries(ASSLBs)have advantages of safety and high energy density,and they are expected to become the next generation of energy storage devices.Sulfide-based solid-state electrolytes(SSEs)with... All-solid-state lithium batteries(ASSLBs)have advantages of safety and high energy density,and they are expected to become the next generation of energy storage devices.Sulfide-based solid-state electrolytes(SSEs)with high ionic conduc-tivity and low grain boundary resistance exhibit remarkable practical application.However,the space charge layer(SCL)eff ect and high interfacial resistance caused by a mismatch with the current commercial oxide cathodes restrict the develop-ment of sulfide SSEs and ASSLBs.This review summarizes the research progress on the SCL eff ect of sulfide SSEs and oxide cathodes,including the mechanism and direct evidence from high performance in-situ characterizations,as well as recent progress on the interfacial modification strategies to alleviate the SCL eff ect.This study provides future direction to stabilize the high performance sulfide-based solid electrolyte/oxide cathode interface for state-of-the-art ASSLBs and future all-SSE storage devices. 展开更多
关键词 sulfide-based solid electrolyte INTERFACES Space charge layer All-solid-state batteries
下载PDF
Nanostructured CdS for efficient photocatalytic H2 evolution: A review 被引量:23
3
作者 Rongchen Shen Doudou Ren +4 位作者 Yingna Ding Yatong Guan Yun Hau Ng Peng Zhang Xin Li 《Science China Materials》 SCIE EI CSCD 2020年第11期2153-2188,共36页
Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This r... Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This review focuses on the recent progress related to the design,modification,and construction of Cd S-based photocatalysts with excellent photocatalytic H2 evolution performances.First,the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced.Thereafter,the fundamental properties,important advancements,and bottlenecks of Cd S in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material.Subsequently,various modification strategies adopted for Cd S-based photocatalysts to yield solar H2 are discussed,among which the effective approaches aim at generating more charge carriers,promoting efficient charge separation,boosting interfacial charge transfer,accelerating charge utilization,and suppressing charge-induced self-photocorrosion.The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples.Finally,the prospects and challenges encountered in developing nanostructured Cd S and Cd S-based nanocomposites in photocatalytic H2 evolution are presented. 展开更多
关键词 solar fuel nanostructured cadmium sulfide-based photocatalysts modification strategies hydrogen production photocharge utilization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部