The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(3...Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(35°-40°N,110°-125°E)during 1979-2020 was studied.By calculating the monthly climatic precipitation in North China,it is found that precipitation was mainly distributed from June to August,so the trend of precipitation in North China from June to August was mainly analyzed.Firstly,the five-point moving average of regional mean precipitation in North China from June to August during 1979-2020 was conducted.It is found that the fitting curve of the five-point sliding average was basically consistent with the changing trend of regional precipitation,and it showed a certain upward trend.Secondly,the cumulative anomaly of regional average summer precipitation in North China showed a significant upward trend after 2005,which was similar to the moving average result,indicating that the precipitation in the later period increased compared with the earlier period.The changing trend of summer precipitation in North China in the past 42 years was analyzed,and the results show that precipitation showed a significant increasing trend in most areas of North China,so that regional average precipitation also tended to increase significantly.By comparing the precipitation in the past five years(2016-2020)and the last 36 years(1979-2015),it is found that the increase of summer precipitation in North China was more obvious,so the reasons for the increase in precipitation were further analyzed.Since the occurrence of precipitation requires favorable thermal dynamic conditions,the one-dimensional linear regression of water vapor content at 850 hPa and meridional wind speed was conduced,and it is found that the two variables tended to increase obviously,which was consistent with the increasing trend of precipitation.Seen from both the results of regional average and the spatial distribution of trends,the lower atmospheric water vapor content and wind speed showed a significant positive trend,which led to the increase of summer precipitation.Therefore,it can be concluded that there was a certain changing trend of summer precipitation in North China in the past 42 years,which can provide certain reference for the future forecast of summer precipitation in North China.展开更多
Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-So...Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate.展开更多
[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer preci...[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer precipitation data for 160 observation stations in China during 1951 -2000 by the utilization of empirical orthogonal function (EOF), and characteristics of interannual and interdecadal variability were analyzed. [Result] The summer precipitation mainly distributes in eastern part of China; The 1 st, 2nd and 3rd EOF modes of spatial distribution are especially remarkable as well consistent with the results of previous reports about three rainfall patterns from analysis on the percentages of precipitation anomaly of summer. [Conclusion] There exists interannual and interdecadal variability for summer precipitation in China.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
Based on the summer precipitation data from 53 stations in Liaoning Province and sea surface temperature(SST) data of Hadley Center in 1961-2009,the decadal variation of the relationship between summer precipitation a...Based on the summer precipitation data from 53 stations in Liaoning Province and sea surface temperature(SST) data of Hadley Center in 1961-2009,the decadal variation of the relationship between summer precipitation and SST over Nino3 oceanic regions in the previous autumn was studied.The results showed that their correlation was decreased obviously in recent 30 years.In 1961-1974,summer rainfall could be forecasted according to the SST anomaly over Nino3 oceanic regions in the previous autumn,and there were above 25 stations with the sign accuracy of over 66.7%.However,there were only five stations with the same accuracy during 1980-2009.From 1961 to 1974,25 stations showed block distribution in the central and northeastern Liaoning,but the distribution of five stations was spotty in 1980-2009.Before the middle and latter half of the 1970s,Liaoning had more(less) summer rainfall when SST over the equatorial central and eastern Pacific was higher(lower) in the previous autumn.However,it was difficult to build indicative relationship above since 1980s.展开更多
This study provides new evidence for the feedback effects of vegetation cover on summer precipitation in different regions of China by calculating immediate (same season), and one-and two-season lagged correlations be...This study provides new evidence for the feedback effects of vegetation cover on summer precipitation in different regions of China by calculating immediate (same season), and one-and two-season lagged correlations between the normalized difference vegetation index (NDVI) and summer precipitation. The results show that the correlation coefficients between NDVI in spring and the previous winter and precipitation in summer are positive in most regions of China, and they show significant difference between regions. The stronger one-and two-season lagged correlations occur in the eastern arid/semi-arid region, Central China, and Southwest China out of the eight climatic regions of China, and this implies that vegetation cover change has more sensitive feedback effects on summer precipitation in the three regions. The three regions are defined as sensitive regions. Spatial analyses of correlations between spring NDVI averaged over each sensitive region and summer precipitation of 160 stations suggest that the vegetation cover strongly affects summer precipitation not only over the sensitive region itself but also over other regions, especially the downstream region.展开更多
To study the prediction of the anomalous precipitation and general circulation for the summer(June–July–August) of1998, the Community Climate System Model Version 4.0(CCSM4.0) integrations were used to drive ver...To study the prediction of the anomalous precipitation and general circulation for the summer(June–July–August) of1998, the Community Climate System Model Version 4.0(CCSM4.0) integrations were used to drive version 3.2 of the Weather Research and Forecasting(WRF3.2) regional climate model to produce hindcasts at 60 km resolution. The results showed that the WRF model produced improved summer precipitation simulations. The systematic errors in the east of the Tibetan Plateau were removed, while in North China and Northeast China the systematic errors still existed. The improvements in summer precipitation interannual increment prediction also had regional characteristics. There was a marked improvement over the south of the Yangtze River basin and South China, but no obvious improvement over North China and Northeast China. Further analysis showed that the improvement was present not only for the seasonal mean precipitation, but also on a sub-seasonal timescale. The two occurrences of the Mei-yu rainfall agreed better with the observations in the WRF model,but were not resolved in CCSM. These improvements resulted from both the higher resolution and better topography of the WRF model.展开更多
Summer precipitation products from the 45-Year European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis (ERA-40), and NCEP-Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP...Summer precipitation products from the 45-Year European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis (ERA-40), and NCEP-Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanaiysis (NCEP-2), and Climatic Research Unit (CRU) TS 2.1 dataset are compared with the corresponding observations over China in order to understand the quality and utility of the reanalysis datasets for the period 1979-2001. The results reveal that although the magnitude and location of the rainfall belts differ among the reanaiysis, CRU, and station data over South and West China, the spatial distributions show good agreement over most areas of China. In comparison with the observations in most areas of China, CRU best matches the observed summer precipitation, while ERA-40 reports less precipitation and NCEP-2 reports more precipitation than the observations. With regard to the amplitude of the interannuai variations, CRU is better than either of the reanalyses in representing the corresponding observations. The amplitude in NCEP-2 is stronger but that of ERA-40 is weaker than the observations in most study domains. NCEP-2 has a more obvious interannuai variability than ERA-40 or CRU in most areas of East China. Through an Empirical orthogonai function (EOF) analysis, the main features of the rainfall belts produced by CRU agree better with the observations than with those produced by the reanalyses in the Yangtze-Huaihe River valley. In East of China, particularly in the Yangtze-Huaihe River valley, CRU can reveal the quasi-bienniai oscillation of summer precipitation represented by the observations, but the signal of ERA-40 is comparatively weak and not very obvious, whereas that of NCEP-2 is also weak before 1990 but very strong after 1990. The results also suggest that the magnitude of the precipitation difference between ERA-40 and the observations is smaller than that between NCEP-2 and the observations, but the variations represented by NCEP-2 are more reasonable than those given by ERA-40 in most areas of East China to some extent.展开更多
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorol...The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.展开更多
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carr...Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.展开更多
The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation...The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau.展开更多
Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been...Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes.展开更多
Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern Ch...Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China.In this study,four sea ice datasets(HadISST1,HadISST2.2,ERA-Interim and NOAA/NSIDC)and two global precipitation datasets(CRU V4.01 and GPCP V2.3)are used to investigate co-variations between melt season(March−April−May−June,MAMJ)Bering Sea ice cover(BSIC)and summer(June−July−August,JJA)East Asian precipitation.All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal−Northeastern China(Baikal−NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5),a mechanism to understand how the MAMJ BSIC influences the JJA Baikal−NEC rainfall is suggested.More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP)anomaly over the North Atlantic during MAMJ.The high SLP anomaly,associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST)anomalies in a zonal dipole-pattern in the North Atlantic during summer.The dipole SST anomaly drives a zonally orientated wave train,which causes a high anomaly geopotential height at 500 hPa over the Sea of Japan.As a result,the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal−NEC.This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal−NEC,positively influences the increased rainfall in summer.展开更多
A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational ...A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models.展开更多
An analysis of the Ishii ocean heat content(OHC) in the tropical Indian Ocean from the surface to 700-m depth shows that the OHC changes dramatically on the interannual timescale in the Indian Ocean.The first mode of ...An analysis of the Ishii ocean heat content(OHC) in the tropical Indian Ocean from the surface to 700-m depth shows that the OHC changes dramatically on the interannual timescale in the Indian Ocean.The first mode of empirical orthogonal function(EOF1) of the OHC shows that there is a strong air-sea interaction pattern in the Indian Ocean with a positive(negative) loading in the east and a negative(positive) loading in the west.This seesaw oscillation pattern influences the summer precipitation in China with a North-South reversed distribution.Composite analysis shows that during a positive(negative) OHC episode,an anomalous cyclonic(anticyclonic) circulation over the western Pacific and South China weakens(enhances) the monsoonal northward flow in the lower troposphere;meanwhile,anomalous meridional circulation connects the descending(ascending) branch over the Southeast Indian Ocean and the ascending(descending) branch in South China as well as a descending(ascending) branch over North China.Analysis of the mechanism behind these features suggests that(1) the accumulation of OHC-induced vorticity is related to the wave activity over the mid-latitudes and that(2) the meridional teleconnection induced by the Indo-Pacific air-OHC interaction appears over East Asia and the western Pacific.Both of these patterns can cause summer precipitation anomalies in China.展开更多
Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Fl...Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.展开更多
By using 1958-2001 NOAA extended reconstructed sea surface temperature(SST) data, ERA40 reanalysis soil moisture data and precipitation data of 444 stations in China(east of 100°E), the possible relationships amo...By using 1958-2001 NOAA extended reconstructed sea surface temperature(SST) data, ERA40 reanalysis soil moisture data and precipitation data of 444 stations in China(east of 100°E), the possible relationships among South China Sea(SCS) SST anomaly(SSTA), soil moisture anomalies(SMA) and summer precipitation in eastern China as well as their possible physical processes are investigated. Results show that the SSTA of SCS bears an evidently negative correlation with spring soil moisture in the east part of Southwest China. More(less) precipitation happens in the Yangtze River basin and less(more) in the Southeast China in summer when the SSTA of SCS is higher(lower) than normal and the soil in the east part of Southwest China is dry(wet) in spring. Further analysis shows that when the SSTA of SCS is high(low), the southwesterly wind at low level is weak(strong), decreasing(increasing) the water vapor transport in South China, resulting in reduced(increased) spring precipitation in the east part of Southwest China and more(less) soil moisture in spring. Through the evaporation feedback mechanism, the dry(wet) soil makes the surface temperature higher(lower) in summer, causing the westward extension(eastward retreat) of the West Pacific Subtropical High, eventually leading to the summer precipitation anomalies.展开更多
Based on the NCEP/NCAR reanalysis global SST, 500-hPa geopotential height, 850-hPa wind monthly mean data and summer precipitation from 80 observation stations of Northeast China for the period 1961-2000, the summer p...Based on the NCEP/NCAR reanalysis global SST, 500-hPa geopotential height, 850-hPa wind monthly mean data and summer precipitation from 80 observation stations of Northeast China for the period 1961-2000, the summer precipitation field of Northeast China was decomposed by using the principal component analysis method, then the relationships between the first three precipitation leading modes and the global SSTA in preceding seasons were studied, and the responses of the 500-hPa atmospheric circulation in East Asia to the preceding winter SSTA in north Pacific and its influence on the summer precipitation in Northeast China were probed. The results show that the SSTA, especially the ENSO event in preceding seasons has really very important influence on the occurrence of the whole coincident precipitation episode in Northeast China, and relates to the precipitation episodes of the reverse variation in south-north and in west-east direction closely. The north Pacific SST anomalies in preceding winters are associated with the summer precipitation in Northeast China through its influence on the western Pacific subtropical high and the East Asia subtropical monsoon in summer. Therefore, taking the global SSTA distribution in preceding seasons, especially the ENSO event, as the precursor signal to predict the precipitation anomaly in Northeast China has good reliability and definite indicative significance.展开更多
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
文摘Based on the reanalysis data of the National Center for Environmental Prediction(NCEP)and the precipitation dataset of the U.S.Climate Prediction Center(CPC),the changing trend of summer precipitation in North China(35°-40°N,110°-125°E)during 1979-2020 was studied.By calculating the monthly climatic precipitation in North China,it is found that precipitation was mainly distributed from June to August,so the trend of precipitation in North China from June to August was mainly analyzed.Firstly,the five-point moving average of regional mean precipitation in North China from June to August during 1979-2020 was conducted.It is found that the fitting curve of the five-point sliding average was basically consistent with the changing trend of regional precipitation,and it showed a certain upward trend.Secondly,the cumulative anomaly of regional average summer precipitation in North China showed a significant upward trend after 2005,which was similar to the moving average result,indicating that the precipitation in the later period increased compared with the earlier period.The changing trend of summer precipitation in North China in the past 42 years was analyzed,and the results show that precipitation showed a significant increasing trend in most areas of North China,so that regional average precipitation also tended to increase significantly.By comparing the precipitation in the past five years(2016-2020)and the last 36 years(1979-2015),it is found that the increase of summer precipitation in North China was more obvious,so the reasons for the increase in precipitation were further analyzed.Since the occurrence of precipitation requires favorable thermal dynamic conditions,the one-dimensional linear regression of water vapor content at 850 hPa and meridional wind speed was conduced,and it is found that the two variables tended to increase obviously,which was consistent with the increasing trend of precipitation.Seen from both the results of regional average and the spatial distribution of trends,the lower atmospheric water vapor content and wind speed showed a significant positive trend,which led to the increase of summer precipitation.Therefore,it can be concluded that there was a certain changing trend of summer precipitation in North China in the past 42 years,which can provide certain reference for the future forecast of summer precipitation in North China.
基金This research was funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the Shenzhen Science and Technology Program(JCYJ20210324131810029)+2 种基金the National Natural Science Foundation of China(72293604,42275017)the Guangdong Provincial College Innovation Team Project(060313452101)the Program for scientific research start-up funds of Guangdong Ocean University(R17056).
文摘Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate.
文摘[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer precipitation data for 160 observation stations in China during 1951 -2000 by the utilization of empirical orthogonal function (EOF), and characteristics of interannual and interdecadal variability were analyzed. [Result] The summer precipitation mainly distributes in eastern part of China; The 1 st, 2nd and 3rd EOF modes of spatial distribution are especially remarkable as well consistent with the results of previous reports about three rainfall patterns from analysis on the percentages of precipitation anomaly of summer. [Conclusion] There exists interannual and interdecadal variability for summer precipitation in China.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
文摘Based on the summer precipitation data from 53 stations in Liaoning Province and sea surface temperature(SST) data of Hadley Center in 1961-2009,the decadal variation of the relationship between summer precipitation and SST over Nino3 oceanic regions in the previous autumn was studied.The results showed that their correlation was decreased obviously in recent 30 years.In 1961-1974,summer rainfall could be forecasted according to the SST anomaly over Nino3 oceanic regions in the previous autumn,and there were above 25 stations with the sign accuracy of over 66.7%.However,there were only five stations with the same accuracy during 1980-2009.From 1961 to 1974,25 stations showed block distribution in the central and northeastern Liaoning,but the distribution of five stations was spotty in 1980-2009.Before the middle and latter half of the 1970s,Liaoning had more(less) summer rainfall when SST over the equatorial central and eastern Pacific was higher(lower) in the previous autumn.However,it was difficult to build indicative relationship above since 1980s.
基金supported jointly by the National Natural Science Foundation of China(Grant No.40231006)the Innovation Project of Chinese Academy of Sciences(CAS)(Grant No.KZCX2-203,ZKCX2 SW-210)the National Key Program for Developing Basic Sciences(Grant No.G1999043408).
文摘This study provides new evidence for the feedback effects of vegetation cover on summer precipitation in different regions of China by calculating immediate (same season), and one-and two-season lagged correlations between the normalized difference vegetation index (NDVI) and summer precipitation. The results show that the correlation coefficients between NDVI in spring and the previous winter and precipitation in summer are positive in most regions of China, and they show significant difference between regions. The stronger one-and two-season lagged correlations occur in the eastern arid/semi-arid region, Central China, and Southwest China out of the eight climatic regions of China, and this implies that vegetation cover change has more sensitive feedback effects on summer precipitation in the three regions. The three regions are defined as sensitive regions. Spatial analyses of correlations between spring NDVI averaged over each sensitive region and summer precipitation of 160 stations suggest that the vegetation cover strongly affects summer precipitation not only over the sensitive region itself but also over other regions, especially the downstream region.
基金supported by the National Natural Science Foundation of China (Grant No. 41130103)the special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306026)+1 种基金the National Natural Science Foundation for Distinguished Young Scientists of China (Grant No. 41325018)the National Basic Research Program of China (Grant No. 2010CB951901)
文摘To study the prediction of the anomalous precipitation and general circulation for the summer(June–July–August) of1998, the Community Climate System Model Version 4.0(CCSM4.0) integrations were used to drive version 3.2 of the Weather Research and Forecasting(WRF3.2) regional climate model to produce hindcasts at 60 km resolution. The results showed that the WRF model produced improved summer precipitation simulations. The systematic errors in the east of the Tibetan Plateau were removed, while in North China and Northeast China the systematic errors still existed. The improvements in summer precipitation interannual increment prediction also had regional characteristics. There was a marked improvement over the south of the Yangtze River basin and South China, but no obvious improvement over North China and Northeast China. Further analysis showed that the improvement was present not only for the seasonal mean precipitation, but also on a sub-seasonal timescale. The two occurrences of the Mei-yu rainfall agreed better with the observations in the WRF model,but were not resolved in CCSM. These improvements resulted from both the higher resolution and better topography of the WRF model.
文摘Summer precipitation products from the 45-Year European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis (ERA-40), and NCEP-Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanaiysis (NCEP-2), and Climatic Research Unit (CRU) TS 2.1 dataset are compared with the corresponding observations over China in order to understand the quality and utility of the reanalysis datasets for the period 1979-2001. The results reveal that although the magnitude and location of the rainfall belts differ among the reanaiysis, CRU, and station data over South and West China, the spatial distributions show good agreement over most areas of China. In comparison with the observations in most areas of China, CRU best matches the observed summer precipitation, while ERA-40 reports less precipitation and NCEP-2 reports more precipitation than the observations. With regard to the amplitude of the interannuai variations, CRU is better than either of the reanalyses in representing the corresponding observations. The amplitude in NCEP-2 is stronger but that of ERA-40 is weaker than the observations in most study domains. NCEP-2 has a more obvious interannuai variability than ERA-40 or CRU in most areas of East China. Through an Empirical orthogonai function (EOF) analysis, the main features of the rainfall belts produced by CRU agree better with the observations than with those produced by the reanalyses in the Yangtze-Huaihe River valley. In East of China, particularly in the Yangtze-Huaihe River valley, CRU can reveal the quasi-bienniai oscillation of summer precipitation represented by the observations, but the signal of ERA-40 is comparatively weak and not very obvious, whereas that of NCEP-2 is also weak before 1990 but very strong after 1990. The results also suggest that the magnitude of the precipitation difference between ERA-40 and the observations is smaller than that between NCEP-2 and the observations, but the variations represented by NCEP-2 are more reasonable than those given by ERA-40 in most areas of East China to some extent.
基金This work was supported jointly by the Key Innovation Project of the Chinese Academy of Sciences(Grant No.ZKCX2-SW-210)the National Natural Science Foundation of the China(Grant Nos.40375033 and 40175020)the Key National Natural Science Foundation of China(Grant Nos.40231005).
文摘The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.
基金the Ministry of Science and Technology of China through public welfare funding under Grant No.2002DIB20070China Meteorological Administration Grant CCSF 2005-1the National Natural Science Foundation Grant NSF-ATM-0353606
文摘Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.
基金CAS Action-plan for West Development, KZCX2-XB2-06-03 National Natural Science Foundation of China, No.30500064
文摘The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073 and U1133603)
文摘Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes.
基金the National Key R&D Program of China(2017YFE0111800 and 2017YFA0603802)the National Natural Science Foundation of China(Grant No.41790472)the EU H2020 Blue-Action project(Grant No.727852).
文摘Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China.In this study,four sea ice datasets(HadISST1,HadISST2.2,ERA-Interim and NOAA/NSIDC)and two global precipitation datasets(CRU V4.01 and GPCP V2.3)are used to investigate co-variations between melt season(March−April−May−June,MAMJ)Bering Sea ice cover(BSIC)and summer(June−July−August,JJA)East Asian precipitation.All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal−Northeastern China(Baikal−NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5),a mechanism to understand how the MAMJ BSIC influences the JJA Baikal−NEC rainfall is suggested.More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP)anomaly over the North Atlantic during MAMJ.The high SLP anomaly,associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST)anomalies in a zonal dipole-pattern in the North Atlantic during summer.The dipole SST anomaly drives a zonally orientated wave train,which causes a high anomaly geopotential height at 500 hPa over the Sea of Japan.As a result,the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal−NEC.This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal−NEC,positively influences the increased rainfall in summer.
基金supported by the special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200906018)the National Basic Research Program of China (Grant Nos. 2010CB950304 and 2009CB421406)the Knowl-edge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-QN202)
文摘A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models.
基金supported by the National Basic Research Program of China(973 Program):The impact of Southern Ocean-Indian Ocean air-sea processes on East Asia and the global climate change(Grant No.2010CB950300)National Foundation of the Indian Ocean Opening Voyage Project(Grant Nos. 41149903 and 41049908)+2 种基金the Knowledge Innovation Project for Distinguished Young Scholar of the Chinese Academy of Sciences (Grant No.KZCX2-EW-QN203)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YWQ11-02)the National Natural Science Foundation of China (Grant No.40906010)
文摘An analysis of the Ishii ocean heat content(OHC) in the tropical Indian Ocean from the surface to 700-m depth shows that the OHC changes dramatically on the interannual timescale in the Indian Ocean.The first mode of empirical orthogonal function(EOF1) of the OHC shows that there is a strong air-sea interaction pattern in the Indian Ocean with a positive(negative) loading in the east and a negative(positive) loading in the west.This seesaw oscillation pattern influences the summer precipitation in China with a North-South reversed distribution.Composite analysis shows that during a positive(negative) OHC episode,an anomalous cyclonic(anticyclonic) circulation over the western Pacific and South China weakens(enhances) the monsoonal northward flow in the lower troposphere;meanwhile,anomalous meridional circulation connects the descending(ascending) branch over the Southeast Indian Ocean and the ascending(descending) branch in South China as well as a descending(ascending) branch over North China.Analysis of the mechanism behind these features suggests that(1) the accumulation of OHC-induced vorticity is related to the wave activity over the mid-latitudes and that(2) the meridional teleconnection induced by the Indo-Pacific air-OHC interaction appears over East Asia and the western Pacific.Both of these patterns can cause summer precipitation anomalies in China.
文摘Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.
基金National Science Foundation of China(41230422)Special Funds for Public Welfare of China(GYHY 201206017)+3 种基金NCET ProgramNatural Science Foundation of Jiangsu Province of China(BK2004001)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Research Innovation Program for College Graduates of Jiangsu Province(CXZZ13_0499)
文摘By using 1958-2001 NOAA extended reconstructed sea surface temperature(SST) data, ERA40 reanalysis soil moisture data and precipitation data of 444 stations in China(east of 100°E), the possible relationships among South China Sea(SCS) SST anomaly(SSTA), soil moisture anomalies(SMA) and summer precipitation in eastern China as well as their possible physical processes are investigated. Results show that the SSTA of SCS bears an evidently negative correlation with spring soil moisture in the east part of Southwest China. More(less) precipitation happens in the Yangtze River basin and less(more) in the Southeast China in summer when the SSTA of SCS is higher(lower) than normal and the soil in the east part of Southwest China is dry(wet) in spring. Further analysis shows that when the SSTA of SCS is high(low), the southwesterly wind at low level is weak(strong), decreasing(increasing) the water vapor transport in South China, resulting in reduced(increased) spring precipitation in the east part of Southwest China and more(less) soil moisture in spring. Through the evaporation feedback mechanism, the dry(wet) soil makes the surface temperature higher(lower) in summer, causing the westward extension(eastward retreat) of the West Pacific Subtropical High, eventually leading to the summer precipitation anomalies.
文摘Based on the NCEP/NCAR reanalysis global SST, 500-hPa geopotential height, 850-hPa wind monthly mean data and summer precipitation from 80 observation stations of Northeast China for the period 1961-2000, the summer precipitation field of Northeast China was decomposed by using the principal component analysis method, then the relationships between the first three precipitation leading modes and the global SSTA in preceding seasons were studied, and the responses of the 500-hPa atmospheric circulation in East Asia to the preceding winter SSTA in north Pacific and its influence on the summer precipitation in Northeast China were probed. The results show that the SSTA, especially the ENSO event in preceding seasons has really very important influence on the occurrence of the whole coincident precipitation episode in Northeast China, and relates to the precipitation episodes of the reverse variation in south-north and in west-east direction closely. The north Pacific SST anomalies in preceding winters are associated with the summer precipitation in Northeast China through its influence on the western Pacific subtropical high and the East Asia subtropical monsoon in summer. Therefore, taking the global SSTA distribution in preceding seasons, especially the ENSO event, as the precursor signal to predict the precipitation anomaly in Northeast China has good reliability and definite indicative significance.