Radioactive decay of super heavy nuclei via the emission of α-particles has been studied theoretically in the preformed cluster model (PCM). The nucleus-nucleus (NN) potential is obtained by double folding the de...Radioactive decay of super heavy nuclei via the emission of α-particles has been studied theoretically in the preformed cluster model (PCM). The nucleus-nucleus (NN) potential is obtained by double folding the density distributions of the α-particle and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction, supplemented by a zero-range pseudo-potential for exchange term, is used to calculate the NN potential. The α decay half-lives for 317 nuclei at Z=102 120 are performed in the PCM framework with the theoretical Q values extracted from the MSller-Nix-Kratz and Liran-Marinov-Zeldes mass tables and are compared with the experimental data. The calculated results are also compared with those obtained by using Q values from the Muntian-Hofmann-Patyk-Sobiczewski and Myers-Swiatecki mass estimates.展开更多
The stability of super heavy nuclei(SHN) from Z =104 to Z =126 is analyzed systematically,associated with the following theoretical mass tables: FRDM2012 [At.Data Nucl.Data Tables 109-110(2016)],WS2010 [Phys.Rev....The stability of super heavy nuclei(SHN) from Z =104 to Z =126 is analyzed systematically,associated with the following theoretical mass tables: FRDM2012 [At.Data Nucl.Data Tables 109-110(2016)],WS2010 [Phys.Rev.C 82,044304(2010)],WS-LZ-RBF [J.Phys.G: Nucl.Part.Phys.42,095107(2015)] and the updated experimental data AME2016 [Chinese Physics C 41,040002(2017)].The nucleus with the biggest mean binding energy in each isotopic chain shows systematic regular behavior,indicating that the mean binding energy is a good criterion to classify SHN by their stability.Based on binding energy,the α-decay energy Qα,two-proton separation energy S2p,and two-neutron separation energy S2n are extracted and analyzed.It is found that N =152 and N =162 are sub-magic numbers,N = 184 is a neutron magic number,and Z = 114 is a proton magic number,which may provide useful information for the synthesis and identification of SHN.展开更多
We consider the systematics of α-decay half-lives of super-heavy nuclei versus the decay energy and the total α-kinetic energy. We calculate the half-lives using the experimental Qα values. The computed half-lives ...We consider the systematics of α-decay half-lives of super-heavy nuclei versus the decay energy and the total α-kinetic energy. We calculate the half-lives using the experimental Qα values. The computed half-lives are compared with the experimental data and with existing empirical estimates and are found to be in good agreement. Also, we obtain α-preformation factors from the ratio between theoretical and experimental results for some super- heavy nuclei and evaluate the standard deviation. The results indicate the acceptability of the approach.展开更多
基金Supported by National Natural Science Foundation of China (10875150, 10775183, 10535010)Major State Basic Research Development Programme in China (2007CB815000)
文摘Radioactive decay of super heavy nuclei via the emission of α-particles has been studied theoretically in the preformed cluster model (PCM). The nucleus-nucleus (NN) potential is obtained by double folding the density distributions of the α-particle and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction, supplemented by a zero-range pseudo-potential for exchange term, is used to calculate the NN potential. The α decay half-lives for 317 nuclei at Z=102 120 are performed in the PCM framework with the theoretical Q values extracted from the MSller-Nix-Kratz and Liran-Marinov-Zeldes mass tables and are compared with the experimental data. The calculated results are also compared with those obtained by using Q values from the Muntian-Hofmann-Patyk-Sobiczewski and Myers-Swiatecki mass estimates.
基金Supported by National Natural Science Foundation of China(11675066,11647306)Fundamental Research Funds for the Central Universities(lzujbky-2017-ot04)Feitian Scholar Project of Gansu province
文摘The stability of super heavy nuclei(SHN) from Z =104 to Z =126 is analyzed systematically,associated with the following theoretical mass tables: FRDM2012 [At.Data Nucl.Data Tables 109-110(2016)],WS2010 [Phys.Rev.C 82,044304(2010)],WS-LZ-RBF [J.Phys.G: Nucl.Part.Phys.42,095107(2015)] and the updated experimental data AME2016 [Chinese Physics C 41,040002(2017)].The nucleus with the biggest mean binding energy in each isotopic chain shows systematic regular behavior,indicating that the mean binding energy is a good criterion to classify SHN by their stability.Based on binding energy,the α-decay energy Qα,two-proton separation energy S2p,and two-neutron separation energy S2n are extracted and analyzed.It is found that N =152 and N =162 are sub-magic numbers,N = 184 is a neutron magic number,and Z = 114 is a proton magic number,which may provide useful information for the synthesis and identification of SHN.
文摘We consider the systematics of α-decay half-lives of super-heavy nuclei versus the decay energy and the total α-kinetic energy. We calculate the half-lives using the experimental Qα values. The computed half-lives are compared with the experimental data and with existing empirical estimates and are found to be in good agreement. Also, we obtain α-preformation factors from the ratio between theoretical and experimental results for some super- heavy nuclei and evaluate the standard deviation. The results indicate the acceptability of the approach.