Separation membrane with high flux is generally encouraged in industrial application,because of the tremendous needs for decreasing membrane areas,usage costs and space requirements.The most effective and direct metho...Separation membrane with high flux is generally encouraged in industrial application,because of the tremendous needs for decreasing membrane areas,usage costs and space requirements.The most effective and direct method for obtaining the high flux is to decrease membrane thickness.Polyamide(PA)nanofiltration membrane is conventionally prepared by the direct interfacial polymerization(IP)on substrate surface,and results in a thick PA layer.In this work,we proposed a strategy that constructing triazine-based porous organic polymer(TRZ-POP)as the interlayer to prepare the ultrathin PA nanofiltration membranes.TRZ-POP is firstly deposited on the polyethersulfone substrate,and then the formed TRZ-POP provides more adhesion sites towards PA based on its high specific surface areas.The chemical bonding between terminal amine group of TRZ-POP and the amide group of PA further improves the binding force,and strengthens the stability of PA layer.More importantly,the high porosity of TRZPOP layer causes the higher polymerization of initial PA owning to the stored sufficient amino monomer;and H-bonding interaction between amine groups of TRZ-POP and piperazine(PIP)can astrict the release of PIP.Thus,IP process is controlled,and the thinnest thickness of prepared PA layer is only<15 nm.As expected,PA/TRZ-POP membrane shows a more excellent water flux of 1414 L·m^(-2)·h^(-1)·MPa^(-1)than that of the state-of-the-art nanofiltration membranes,and without sacrificing dye rejection.The build of TRZPOP interlayer develops a new method for obtaining a high-flux nanofiltration membrane.展开更多
Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient...Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation.展开更多
A novel porous coordination polymer,iron naphthalenedicarboxylate Fe(OH)(1,4-NDC)·2H2O is hydrothermally synthesized by the reaction of FeSO4·7H2O and 1,4-naphthalenedicarboxylic acid(1,4-H2NDC) at 150...A novel porous coordination polymer,iron naphthalenedicarboxylate Fe(OH)(1,4-NDC)·2H2O is hydrothermally synthesized by the reaction of FeSO4·7H2O and 1,4-naphthalenedicarboxylic acid(1,4-H2NDC) at 150℃.The compound crystallizes in a tetragonal space group P42/nmc:a=2.1447(4) nm,c=0.68849(14) nm,V=3.1669(11) nm3,Z=8,R=0.0845,wR=0.1829.The crystal structure exhibits a three-dimensional framework which is composed of infinite chains of corner-sharing octahedral Fe(OH)2O4 with 1,4-NDC ligands forming two types of channels with square-shaped cross-sections.The large channels present a cross-section of 0.76 nm×0.76 nm,while the small channels are about 0.30 nm×0.30 nm.No structural transformation occurs after removing the guest water molecules,while a robust structure generates with permanent porosity.The adsorption measurements show that the anhydrous sample of the compound can adsorb CO2 into its pores.The adsorption isotherms for methanol,acetone,tetrahydrofuran and benzene are also measured.展开更多
An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Su...An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Suzuki,Heck and Sonogashira couplings,and afforded the corresponding products while exhibiting excellent activities and selectivities.More importantly,this catalyst can be readily recycled.These features show that such catalysts have significant potential applications in the future.展开更多
Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials...Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.展开更多
In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxyme...In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxymethylfurfural(EMF) in a renewable mixed solvent system consisting of ethanol and tetrahydrofuran(THF). The influence of –SO3H content on the acidity as well as on the catalytic activity of the porous coordination polymers in EMF production was also studied. High EMF yields of 67.7% and 54.2% could be successively obtained from fructose and inulin in the presence of MIL-101-SO;H(100) at 130 °C for 15 h.The catalyst could be reused for five times without significant loss of its activity and the recovery process was facile and simple. This work provides a new platform by application of porous coordination polymers(PCPs) for the production of the potential liquid fuel molecule EMF from biomass in a sustainable solvent system.展开更多
A new chiral monomer,(S)‐5,5′‐divinyl‐BINAP,was successfully synthesized and embedded intotwo different porous organic polymers(Poly‐1and Poly‐2).After loading a Rh species,the catalystswere applied for the hete...A new chiral monomer,(S)‐5,5′‐divinyl‐BINAP,was successfully synthesized and embedded intotwo different porous organic polymers(Poly‐1and Poly‐2).After loading a Rh species,the catalystswere applied for the heterogeneous asymmetric hydroformylation of styrene.Compared with thehomogeneous BINAP analogue,the enantioselectivity of Rh/Poly‐1catalyst was drastically increasedby approximately70%.The improved enantioselectivity of the porous Rh/BINAP polymerswas attributed to the presence of flexible chiral nanopockets resulting from the increased bulk ofthe R groups near the catalytic center.展开更多
The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pore...The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.展开更多
Nitrogen-rich porous organic polymers(POPs)with basic features have already shown promising performance in various organic reactions.But the harsh conditions,tedious synthetic methods and the requirement of specific m...Nitrogen-rich porous organic polymers(POPs)with basic features have already shown promising performance in various organic reactions.But the harsh conditions,tedious synthetic methods and the requirement of specific monomers impede their further application.Herein,we introduce isoindoline chemistry into POP community.An isoindoline formation process between aniline and bromomethylbenzenedcoupling nucleophilic substitution,HBr elimination,and intramolecular cyclization in one pot,is utilized for POPs synthesis.Nitrogen-rich isoindolinebased porous polymers(IPPs)were obtained with specific surface areas up to 408 m^(2) g^(-1).Unexpectedly,mechanochemistry could enable the rapid(3 h)and solid-state synthesis of IPP catalysts.Moreover,this nitrogen-rich catalyst presents excellent activity(isolated yield:99%),scalable ability(up to 14 g per run)and recyclability(five runs)towards the Knoevenagel condensation reaction under mild reaction conditions(water as solvent at room temperature).展开更多
The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for t...The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals.展开更多
Highly porous nitrogen-doped carbon materials were synthesized by the carbonization of a low-cost porous covalent triazine polymer, PCTP-3, which had been synthesized by the AlClcatalyzed FriedelCrafts reaction of rea...Highly porous nitrogen-doped carbon materials were synthesized by the carbonization of a low-cost porous covalent triazine polymer, PCTP-3, which had been synthesized by the AlClcatalyzed FriedelCrafts reaction of readily available monomers. The nature of the bond and structure of the resulting materials were confirmed using various spectroscopic methods, and the effects of KOH activation on the textural properties of the porous carbon materials were also examined. The KOH-activated porous carbon(aPCTP-3c) materials possessed a high surface area of 2271 mgand large micro/total pore volumes of 0.87/0.95 cmg, respectively, with narrower micropore size distributions than the porous carbon prepared without activation(PCTP-3c). The aPCTP-3c exhibited the best COuptakes of 284.5 and 162.3 mg gand CHuptakes of 39.6 and 25.9 mg gat 273 and 298 K/1 bar, respectively, which are comparable to the performance of some benchmark carbon materials under the same conditions. The prepared materials exhibited high CO/Nselectivity and could be regenerated easily.展开更多
Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from ...Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from the flue gas because of the large CO_(2) capture capacity and high selectivity.However,it is often limited by the equipment corrosion and the high desorption energy consumption,and adsorption of CO_(2) using solid adsorbents has been receiving more attention in recent years due to its simplicity and high efficiency.More recently,a great number of porous organic polymers(POPs)have been designed and constructed for CO_(2) capture,and they are proven promising solid adsorbents for CO_(2) capture due to their high Brunauer-Emmett-Teller(BET)surface area(SBET),adjustable pore size and easy functionalization.In particular,they usually have rigid skeleton,permanent porosity,and good physiochemical stability.In this review,we have a detailed review for the different POPs developed in recent years,not only the design strategy,but also the special structure for CO_(2) capture.The outlook of the opportunities and challenges of the POPs is also proposed.展开更多
A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of ...A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of diethylenediamine (DETA), and poly-amine groups of polyethylenimine (PEI) to the network gave rise to task-specific modification of the microenvironments to make them more suitable for CO2 capture. As a result, significant boost of CO2 adsorption capacity of 4.5 mmol/g (for FC-POP-CH2DETA, 273 K, 1 bar) and the CO2/N2 selectivity of 736.1 (for FC- POP-CH2PEI) were observed after the post-synthesis amine modifications. Furthermore, these materials can be regener- ated in elevated temperature under vacuum without apparent loss of CO2 adsorption capacity.展开更多
To prepare polymer supported ionic liquids(PSILs)as effective catalysts for esterification,the free radical suspension copolymerization of vinylbenzyl chloride(VBC,monomer),styrene(St,monomer)and divinylbenzene(DVB,cr...To prepare polymer supported ionic liquids(PSILs)as effective catalysts for esterification,the free radical suspension copolymerization of vinylbenzyl chloride(VBC,monomer),styrene(St,monomer)and divinylbenzene(DVB,crosslinker)with the addition of n-heptane(porogen)was carried out for the fabrication of the porous polymer(PVD)microsphere as support,followed by the immobilization of sulfonic acid-functionalized ionic liquids by the successive treatment of benzimidazole(BIm),1,3-propane sultone and sulfuric acid(H2SO4)or trifluoromethanesulfonic acid(CF3SO3H).The effects of the compositions of DVB and n-heptane on the internal structure of the polymer supports were investigated,and it was found that the support with 40 wt%DVB and 60 wt%n-heptane(with relative to the monomer)could endow the final PSILs with the relatively optimal catalytic performance.The preliminary experiment in the batch reactor indicated that PSILs herein exhibited higher catalytic activities than commercial Amberlyst 46 resin for the esterification of propanoic acid(PROAc)with n-propanol(PROOH).Consequently,the optimal PSILs catalyst,PVD-[Bim-SO3H]HSO4,was selected for further study in the batch reactive distillation column because of low cost and its ease of preparation.The yield of propyl ropionate(PROPRO)could reach up to 97.78%at the optimized conditions of PROOH/PROAc molar ratio(2:1)and catalyst dosage(2.0 wt%).The investigation of the reaction kinetic manifested that the calculated results of second order pseudo-homogeneous kinetic model were in good agreement with experimental values.The pre-exponential factor and activation energy were 4.12×107 L·mol-1·min-1 and 60.57 k J·mol-1,respectively.It is worth noting that the PSILs catalyst could be simply recovered and reused with relatively satisfactory decrease in the catalytic activity,which made it an environmental friendly and promising catalyst in the industrial application.展开更多
Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene(BODIP...Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene(BODIPY) based porous organic polymer(POP) by using Sonogashira coupling reaction. This POP-1 exhibits high thermal stability with moderate surface area. In addition, POP-1 is highly emissive in a solid state. Due to enrichment of different kinds of heteroatoms in the skeleton of the porous polymer, POP-1 selectively captures carbon dioxide(CO_2) with relative high adsorption selectivity of CO_2/N_2.展开更多
The development of applicable electrolytes is the key point for high-performance rechargeable magnesium batteries(RMBs).The use of liquid electrolyte is prone to safety problems caused by liquid electrolyte leakage.Po...The development of applicable electrolytes is the key point for high-performance rechargeable magnesium batteries(RMBs).The use of liquid electrolyte is prone to safety problems caused by liquid electrolyte leakage.Polymer-based gel electrolytes with high ionic conductivity,great flexibility,easy processing,and high safety have been studied by many scholars in recent years.In this work,a novel porous poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)membrane is prepared by a phase inversion method.By immersing porous PVDF-HFP membranes in MgCl2-AlCl3/TEGDME(Tetraethylene glycol dimethyl ether)electrolytes,porous PVDF-HFP based electrolytes(PPEs)are formed.The PPE exhibits a high ionic conductivity(4.72×10^(-4) S cm-1,25℃),a high liquid electrolyte uptake of 162%,as well as a wide voltage window(3.1 V).The galvanostatic cycling test of Mg//Mg symmetric cell with PPE reveals that the reversible magnesium ion(Mg^(2+))plating/stripping occurs at low overpotentials(~0.13 V).Excellent long cycle stability(65.5 mAh g^(-1) over 1700 cycles)is achieved for the quasisolid-state RMB assembled with MoS2/C cathode and Mg anode.Compared with the liquid electrolyte,the PPE could effectively reduce the side reactions and make Mg^(2+)plating/stripping more uniformly on the Mg electrode side.This strategy herein provides a new route to fabricate high-performance RMB through suitable cathode material and polymer electrolyte with excellent performance.展开更多
Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, h...Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, high porosity, microporous structure, and homogeneous pore size distribution. Ferrocene blocks with highly electron-rich characteristics endowed Fc POP with excellent adsorption capacity of CO2 and methyl violet. The kinetic study indicated adsorption of methyl violet onto FcPOP mainly complied with pesudo-second order model. The maximum adsorption capacity of FcPOP derived from Langmuir isotherm model reached up to 516 mg/g. More importantly, FcPOP could be easily regenerated and repeatedly employed for removal of methyl violet with high efficiency. Overall, FcPOP in the present study highlighted prospective applications in the field of gas capture and dyeing wastewater treatment.展开更多
Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based por...Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis.展开更多
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD...Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr.展开更多
Formic acid(FA)has attracted extensive attention as a hydrogen storage material.Here,we develop two heterogeneous catalysts based on porous organic polymers(POPs).After loading the Ru species,the catalyst bearing the ...Formic acid(FA)has attracted extensive attention as a hydrogen storage material.Here,we develop two heterogeneous catalysts based on porous organic polymers(POPs).After loading the Ru species,the catalyst bearing the triphenylphosphine ligand showed excellent performance in terms of activity and stability for the decomposition of FA to produce hydrogen.展开更多
基金funded by National Key Research and Development Program of China (2021YFC2101202)Bingtuan Science and Technology Program (2022DB025)+3 种基金Beijing Natural Science Foundation (2222015)Hebei Province Key Research and Development Program (21327316D)China Postdoctoral Science Foundation (2021M700011)the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of China。
文摘Separation membrane with high flux is generally encouraged in industrial application,because of the tremendous needs for decreasing membrane areas,usage costs and space requirements.The most effective and direct method for obtaining the high flux is to decrease membrane thickness.Polyamide(PA)nanofiltration membrane is conventionally prepared by the direct interfacial polymerization(IP)on substrate surface,and results in a thick PA layer.In this work,we proposed a strategy that constructing triazine-based porous organic polymer(TRZ-POP)as the interlayer to prepare the ultrathin PA nanofiltration membranes.TRZ-POP is firstly deposited on the polyethersulfone substrate,and then the formed TRZ-POP provides more adhesion sites towards PA based on its high specific surface areas.The chemical bonding between terminal amine group of TRZ-POP and the amide group of PA further improves the binding force,and strengthens the stability of PA layer.More importantly,the high porosity of TRZPOP layer causes the higher polymerization of initial PA owning to the stored sufficient amino monomer;and H-bonding interaction between amine groups of TRZ-POP and piperazine(PIP)can astrict the release of PIP.Thus,IP process is controlled,and the thinnest thickness of prepared PA layer is only<15 nm.As expected,PA/TRZ-POP membrane shows a more excellent water flux of 1414 L·m^(-2)·h^(-1)·MPa^(-1)than that of the state-of-the-art nanofiltration membranes,and without sacrificing dye rejection.The build of TRZPOP interlayer develops a new method for obtaining a high-flux nanofiltration membrane.
基金supported by the National Science Foundation of China(21805235)the Opening Foundation of Creative Platform of the Key Laboratory of the Education Department of Hunan Province(20K131)the Construct Program of the Key Discipline in Hunan Province。
文摘Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation.
基金The Natural Science Foundation of Jiangsu Province(No.BK2009262)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘A novel porous coordination polymer,iron naphthalenedicarboxylate Fe(OH)(1,4-NDC)·2H2O is hydrothermally synthesized by the reaction of FeSO4·7H2O and 1,4-naphthalenedicarboxylic acid(1,4-H2NDC) at 150℃.The compound crystallizes in a tetragonal space group P42/nmc:a=2.1447(4) nm,c=0.68849(14) nm,V=3.1669(11) nm3,Z=8,R=0.0845,wR=0.1829.The crystal structure exhibits a three-dimensional framework which is composed of infinite chains of corner-sharing octahedral Fe(OH)2O4 with 1,4-NDC ligands forming two types of channels with square-shaped cross-sections.The large channels present a cross-section of 0.76 nm×0.76 nm,while the small channels are about 0.30 nm×0.30 nm.No structural transformation occurs after removing the guest water molecules,while a robust structure generates with permanent porosity.The adsorption measurements show that the anhydrous sample of the compound can adsorb CO2 into its pores.The adsorption isotherms for methanol,acetone,tetrahydrofuran and benzene are also measured.
基金supported by the National Natural Foundation of China(21422306,21203165,21403193)the Fundamental Research Funds for the Central Universities(2015XZZX004-04)~~
文摘An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Suzuki,Heck and Sonogashira couplings,and afforded the corresponding products while exhibiting excellent activities and selectivities.More importantly,this catalyst can be readily recycled.These features show that such catalysts have significant potential applications in the future.
基金Financial support from National Natural Science Foundation of China(Nos.51702056 and 51772135)the Ministry of Education of China(6141A02022516)China Postdoctoral Science Foundation(2017M622902 and 2019T120790).
文摘Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.
基金financially supported by the Natural Science Foundation of China(no.21576059)the Key Technologies R&D Program(no.2011BAE06B02)+1 种基金the International Science&Technology Cooperation Program of China(2010DFB60840)the Science and Technology Project of Guizhou Province(nos.[2012]6012 and[2011]3016)
文摘In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxymethylfurfural(EMF) in a renewable mixed solvent system consisting of ethanol and tetrahydrofuran(THF). The influence of –SO3H content on the acidity as well as on the catalytic activity of the porous coordination polymers in EMF production was also studied. High EMF yields of 67.7% and 54.2% could be successively obtained from fructose and inulin in the presence of MIL-101-SO;H(100) at 130 °C for 15 h.The catalyst could be reused for five times without significant loss of its activity and the recovery process was facile and simple. This work provides a new platform by application of porous coordination polymers(PCPs) for the production of the potential liquid fuel molecule EMF from biomass in a sustainable solvent system.
基金supported by the Strategic priority Research Program of the Chinese Academy of Sciences (XDB17020400)~~
文摘A new chiral monomer,(S)‐5,5′‐divinyl‐BINAP,was successfully synthesized and embedded intotwo different porous organic polymers(Poly‐1and Poly‐2).After loading a Rh species,the catalystswere applied for the heterogeneous asymmetric hydroformylation of styrene.Compared with thehomogeneous BINAP analogue,the enantioselectivity of Rh/Poly‐1catalyst was drastically increasedby approximately70%.The improved enantioselectivity of the porous Rh/BINAP polymerswas attributed to the presence of flexible chiral nanopockets resulting from the increased bulk ofthe R groups near the catalytic center.
基金This work was supported by the National Natural Science Foundation of China (No. 20023003 and 20128004).
文摘The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.
基金Thousand Talent Program,National Natural Science Foundation of China(Grant No.21776174)the Open Foundation of the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University of China)(No.1809)China Shipbuilding Industry Corporation for the support.
文摘Nitrogen-rich porous organic polymers(POPs)with basic features have already shown promising performance in various organic reactions.But the harsh conditions,tedious synthetic methods and the requirement of specific monomers impede their further application.Herein,we introduce isoindoline chemistry into POP community.An isoindoline formation process between aniline and bromomethylbenzenedcoupling nucleophilic substitution,HBr elimination,and intramolecular cyclization in one pot,is utilized for POPs synthesis.Nitrogen-rich isoindolinebased porous polymers(IPPs)were obtained with specific surface areas up to 408 m^(2) g^(-1).Unexpectedly,mechanochemistry could enable the rapid(3 h)and solid-state synthesis of IPP catalysts.Moreover,this nitrogen-rich catalyst presents excellent activity(isolated yield:99%),scalable ability(up to 14 g per run)and recyclability(five runs)towards the Knoevenagel condensation reaction under mild reaction conditions(water as solvent at room temperature).
文摘The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(grant number:2015042434)the support by the Korea Research Fellowship Program(grant number:2017H1D3A1A02013620)
文摘Highly porous nitrogen-doped carbon materials were synthesized by the carbonization of a low-cost porous covalent triazine polymer, PCTP-3, which had been synthesized by the AlClcatalyzed FriedelCrafts reaction of readily available monomers. The nature of the bond and structure of the resulting materials were confirmed using various spectroscopic methods, and the effects of KOH activation on the textural properties of the porous carbon materials were also examined. The KOH-activated porous carbon(aPCTP-3c) materials possessed a high surface area of 2271 mgand large micro/total pore volumes of 0.87/0.95 cmg, respectively, with narrower micropore size distributions than the porous carbon prepared without activation(PCTP-3c). The aPCTP-3c exhibited the best COuptakes of 284.5 and 162.3 mg gand CHuptakes of 39.6 and 25.9 mg gat 273 and 298 K/1 bar, respectively, which are comparable to the performance of some benchmark carbon materials under the same conditions. The prepared materials exhibited high CO/Nselectivity and could be regenerated easily.
文摘Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from the flue gas because of the large CO_(2) capture capacity and high selectivity.However,it is often limited by the equipment corrosion and the high desorption energy consumption,and adsorption of CO_(2) using solid adsorbents has been receiving more attention in recent years due to its simplicity and high efficiency.More recently,a great number of porous organic polymers(POPs)have been designed and constructed for CO_(2) capture,and they are proven promising solid adsorbents for CO_(2) capture due to their high Brunauer-Emmett-Teller(BET)surface area(SBET),adjustable pore size and easy functionalization.In particular,they usually have rigid skeleton,permanent porosity,and good physiochemical stability.In this review,we have a detailed review for the different POPs developed in recent years,not only the design strategy,but also the special structure for CO_(2) capture.The outlook of the opportunities and challenges of the POPs is also proposed.
文摘A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of diethylenediamine (DETA), and poly-amine groups of polyethylenimine (PEI) to the network gave rise to task-specific modification of the microenvironments to make them more suitable for CO2 capture. As a result, significant boost of CO2 adsorption capacity of 4.5 mmol/g (for FC-POP-CH2DETA, 273 K, 1 bar) and the CO2/N2 selectivity of 736.1 (for FC- POP-CH2PEI) were observed after the post-synthesis amine modifications. Furthermore, these materials can be regener- ated in elevated temperature under vacuum without apparent loss of CO2 adsorption capacity.
基金The National Natural Science Foundation of China(21576053,91534106)the Natural Science Foundation of Fujian Province(2016J01689).
文摘To prepare polymer supported ionic liquids(PSILs)as effective catalysts for esterification,the free radical suspension copolymerization of vinylbenzyl chloride(VBC,monomer),styrene(St,monomer)and divinylbenzene(DVB,crosslinker)with the addition of n-heptane(porogen)was carried out for the fabrication of the porous polymer(PVD)microsphere as support,followed by the immobilization of sulfonic acid-functionalized ionic liquids by the successive treatment of benzimidazole(BIm),1,3-propane sultone and sulfuric acid(H2SO4)or trifluoromethanesulfonic acid(CF3SO3H).The effects of the compositions of DVB and n-heptane on the internal structure of the polymer supports were investigated,and it was found that the support with 40 wt%DVB and 60 wt%n-heptane(with relative to the monomer)could endow the final PSILs with the relatively optimal catalytic performance.The preliminary experiment in the batch reactor indicated that PSILs herein exhibited higher catalytic activities than commercial Amberlyst 46 resin for the esterification of propanoic acid(PROAc)with n-propanol(PROOH).Consequently,the optimal PSILs catalyst,PVD-[Bim-SO3H]HSO4,was selected for further study in the batch reactive distillation column because of low cost and its ease of preparation.The yield of propyl ropionate(PROPRO)could reach up to 97.78%at the optimized conditions of PROOH/PROAc molar ratio(2:1)and catalyst dosage(2.0 wt%).The investigation of the reaction kinetic manifested that the calculated results of second order pseudo-homogeneous kinetic model were in good agreement with experimental values.The pre-exponential factor and activation energy were 4.12×107 L·mol-1·min-1 and 60.57 k J·mol-1,respectively.It is worth noting that the PSILs catalyst could be simply recovered and reused with relatively satisfactory decrease in the catalytic activity,which made it an environmental friendly and promising catalyst in the industrial application.
基金Funded by the Natural Science Foundation of China(Nos.21674129 and 21376272)the Post-doctor Foundation of Central South University(No.140050292)
文摘Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene(BODIPY) based porous organic polymer(POP) by using Sonogashira coupling reaction. This POP-1 exhibits high thermal stability with moderate surface area. In addition, POP-1 is highly emissive in a solid state. Due to enrichment of different kinds of heteroatoms in the skeleton of the porous polymer, POP-1 selectively captures carbon dioxide(CO_2) with relative high adsorption selectivity of CO_2/N_2.
基金supported by the National Key Research and Development Program of China(2017YFE0113500)the National Natural Science Foundation of China(51872027)。
文摘The development of applicable electrolytes is the key point for high-performance rechargeable magnesium batteries(RMBs).The use of liquid electrolyte is prone to safety problems caused by liquid electrolyte leakage.Polymer-based gel electrolytes with high ionic conductivity,great flexibility,easy processing,and high safety have been studied by many scholars in recent years.In this work,a novel porous poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)membrane is prepared by a phase inversion method.By immersing porous PVDF-HFP membranes in MgCl2-AlCl3/TEGDME(Tetraethylene glycol dimethyl ether)electrolytes,porous PVDF-HFP based electrolytes(PPEs)are formed.The PPE exhibits a high ionic conductivity(4.72×10^(-4) S cm-1,25℃),a high liquid electrolyte uptake of 162%,as well as a wide voltage window(3.1 V).The galvanostatic cycling test of Mg//Mg symmetric cell with PPE reveals that the reversible magnesium ion(Mg^(2+))plating/stripping occurs at low overpotentials(~0.13 V).Excellent long cycle stability(65.5 mAh g^(-1) over 1700 cycles)is achieved for the quasisolid-state RMB assembled with MoS2/C cathode and Mg anode.Compared with the liquid electrolyte,the PPE could effectively reduce the side reactions and make Mg^(2+)plating/stripping more uniformly on the Mg electrode side.This strategy herein provides a new route to fabricate high-performance RMB through suitable cathode material and polymer electrolyte with excellent performance.
基金Project(51778226)supported by the National Natural Science Foundation of ChinaProject(2018JJ3159)supported by the Hunan Provincial Natural Science Foundation for Youths,China。
文摘Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, high porosity, microporous structure, and homogeneous pore size distribution. Ferrocene blocks with highly electron-rich characteristics endowed Fc POP with excellent adsorption capacity of CO2 and methyl violet. The kinetic study indicated adsorption of methyl violet onto FcPOP mainly complied with pesudo-second order model. The maximum adsorption capacity of FcPOP derived from Langmuir isotherm model reached up to 516 mg/g. More importantly, FcPOP could be easily regenerated and repeatedly employed for removal of methyl violet with high efficiency. Overall, FcPOP in the present study highlighted prospective applications in the field of gas capture and dyeing wastewater treatment.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020400)~~
文摘Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis.
基金National Natural Science Foundation of China,Grant/Award Numbers:21975096,22178280Key Laboratory of Nuclear Data Foundation,Grant/Award Number:JCKY2021201C151Young Talent Support Plan,Grant/Award Number:HG6J001。
文摘Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr.
基金supported by the National Key R&D Program of China(2017YFB0602203,2017YFB0602501)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21020300,XDB17020400)~~
文摘Formic acid(FA)has attracted extensive attention as a hydrogen storage material.Here,we develop two heterogeneous catalysts based on porous organic polymers(POPs).After loading the Ru species,the catalyst bearing the triphenylphosphine ligand showed excellent performance in terms of activity and stability for the decomposition of FA to produce hydrogen.